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Abstract

This paper illustrates how an experimental discovery can prompt the search for

a theoretical explanation and also how obtaining such an explanation can provide

heuristic benefits for further experimental discoveries. The case considered begins

with the discovery of Poiseuille’s law for steady fluid flow through pipes. The law

was originally supported by careful experiments, and was only later explained

through a derivation from the more basic Navier-Stokes equations. However, this

derivation employed a controversial boundary condition and also relied on a

contentious approach to viscosity. By comparing two editions of Lamb’s famous

Hydrodynamics textbook, I argue that explanatory considerations were central to

Lamb’s claims about this sort of fluid flow. In addition, I argue that this treatment

of Poiseuille’s law played a heuristic role in Reynolds’ treatment of turbulent flows,

where Poiseuille’s law fails to apply.
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1. Introduction. Often in the history of science some feature of a phenomenon is

identified through experiment long before it is possible to explain that feature.

According to the influential account offered by Bogen and Woodward, a phenomenon is a

repeatable type of event, state, or process [Bogen and Woodward, 1988]. An experiment

can provide data that is good evidence for some feature of some phenomenon, but these

data do not help to identify why that phenomenon has that feature. One example of this

situation is the discovery of Poiseuille’s law.1 The French scientist Jean-Louis Poiseuille

(1799-1869) made extensive measurements of the flow of water through thin glass tubes

of various diameters and lengths. In his 1846 report Poiseuille used these measurements

to justify the claim that

Q = ka4
(p1 − p2)

l
(1)

Q is here the rate of flow of the fluid, (p1 − p2) is the pressure drop across a tube of

length l, a is the radius of the tube, and k is a parameter that varied with fluid and

temperature [Sutera and Skalak, 1993]. Poiseuille carefully restricted his data to flows

that occurred in certain laboratory conditions. While he achieved a high level of control

over this phenomenon, Poiseuille could not explain why his law held when it did or

clarify why it would fail to apply in a broader range of circumstances.

In his 1884 Presidential Address to the British Association for the Advancement of

Science, Lord Rayleigh (John William Strutt, 1842-1919) emphasized how new scientific

discoveries create the need for new theoretical explanations:

If, as is sometimes supposed, science consisted in nothing but the laborious

accumulation of facts, it would soon come to a stand-still, crushed, as it were,

1This law is sometimes called the Hagen-Poiseuille law due to Hagen’s priority in discovering it. See
section 3 for some discussion.
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under its own weight. The suggestion of a new idea, or the detection of a law,

supersedes much that had previously been a burden upon the memory, and

by introducing order and coherence facilitates the retention of the remainder

in an available form ... Two processes are thus at work side by side, the

reception of new material and the digestion and assimilation of the old; and

as both are essential, we may spare ourselves the discussion of their relative

importance. One remark, however, should be made. The work which

deserves, but I am afraid does not always receive, the most credit is that in

which discovery and explanation go hand in hand, in which not only are new

facts presented, but their relation to old ones is pointed out ([Rayleigh, 1900],

351).

Although Rayleigh here mentions only Ohm’s law, earlier in his address he had singled

out fluid dynamics as a central area for future investigation. Poiseuille’s law and its

relations to theory are at the heart of these investigations. For even though “[t]he laws of

motion in capillary tubes, discovered experimentally by Poiseuille, are in complete

harmony with theory ... when we come to the larger pipes and higher velocities with

which engineers usually have to deal, the theory which presupposes a regularly stratified

motion evidently ceases to be applicable ...” ([Rayleigh, 1900], 344). Rayleigh here notes

some recent work by Osborne Reynolds (1842-1912), who “has traced with much success

the passage from the one state of things to the other ...” ([Rayleigh, 1900], 344). As we

will see in more detail below, this transition from so-called laminar to turbulent flow

coincides with the breakdown of Poiseuille’s law, and has proven very difficult to

understand. Rayleigh highlights its significance: “In spite of the difficulties which beset
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both the theoretical and experimental treatment, we may hope to attain before long to a

better understanding of a subject which is certainly second to none in scientific as well as

practical interest” ([Rayleigh, 1900], 344). In summary, the theoretical explanation of

Poiseuille’s law highlights a gap in our understanding of the scope of this law. In section

5 I consider the heuristic role of this explanation in Reynolds’ experimental

investigations of the onset of turbulent flow.

Olivier Darrigol draws on this last remark by Rayleigh in his masterful Worlds of

Flow: A History of Hydrodynamics from the Bernoullis to Prandtl ([Darrigol, 2005], 211,

217). This book shows how the development of fluid dynamics in the nineteenth century

is almost as intricate as the turbulent flow of a fluid, where promising insights are

abandoned only to be rediscovered, and important practical aspects of fluids are

dismissed by theorizers. This pattern is clear in scientists’ shifting attitudes towards

what we now treat as the basic equations of fluid dynamics, the Navier-Stokes equations.

These equations provide a more realistic treatment of fluids by including terms that

reflect the fluid’s viscosity or internal friction. But scientists resisted the introduction of

such terms based on a number of considerations, including the greater mathematical

tractability of the Euler equations, which treat fluids as inviscid. In his chapter on

viscosity, Darrigol shows that the Navier-Stokes equations were proposed by Navier

himself in the 1820s, and later motivated in a different way by Stokes in the 1840s

([Darrigol, 2005], 117, 138). Some of the hesitation to adopt the Navier-Stokes equations

is traced by Darrigol to difficulties in using it to understand the flow of fluids through

pipes. As Darrigol puts it,

as late as 1860, the Navier-Stokes equation did not yet belong to the
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physicist’s standard toolbox. It could still be rediscovered. The boundary

condition, which is crucial in judging consequences for fluid resistance and

flow retardation, was still a matter of discussion. Nearly twenty years elapsed

before Horace Lamb judged the Navier-Stokes equation and Stokes’s

boundary condition to be worth a chapter in a treatise on hydrodynamics.

This evolution rested on the few successes met in the ideal circumstances of

slow or small-scale motion, and on the confirmation of the equation by

Maxwell’s kinetic theory of gases in 1866. Until Reynolds’s and Boussinesq’s

studies of turbulent flow in the 1880s . . . the equation remained completely

irrelevant to hydraulics ([Darrigol, 2005], 144).

In the next section and section 3, I will review some of the elements of this complicated

history, as Darrigol develops it. This will pave the way for section 4 where I will consider

Lamb’s discussions of Poiseuille’s law in his 1879 textbook and how that discussion was

altered for the 1895 edition of that textbook. We will see Lamb’s increased confidence in

1895 that his derivation amounts to an explanation of Poiseuille’s law.

The philosophical payoff of these historical discussions concerns the character and

value of scientific explanation, especially when that explanation is highly mathematical.

In section 5 I will draw three lessons about explanation from this case. First, a

derivation can count as an explanation even when that derivation includes idealizations

or simplifications. Second, these explanations can be endorsed by Woodward’s

interventionist approach to causal explanation. Third, as Rayleigh suggests, there are

important cases where “discovery and explanation go hand in hand” and where

achieving an explanation has heuristic value in facilitating new, important discoveries.2

2Another episode of this sort is emphasized by Heidelberger: early in the twentieth century Prandtl
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Figure 1: Normal and tangential stresses (Kundu and Cohen 2008, 31)

2. Historical Overview. In his 1879 Treatise on the Mathematical Theory of the

Motion of Fluids Lamb begins with a derivation of the so-called Euler equations for fluid

motion. As Darrigol notes, these equations were derived by Euler in the 18th-century by

considering how a cubic element of a fluid would change through an external force like

gravity and internal forces arising from pressure differentials on the sides of that fluid

element ([Darrigol, 2005], 24). To appreciate how such derivations work, consider a cubic

element of fluid aligned with the axes x1, x2 and x3 (figure 1). A stress is a force divided

by the area over which the force is applied. In principle, the fluid element will change

due to both normal stresses that are applied in a direction that is perpendicular to a

side of the fluid element as well as tangential stresses that are applied in a direction that

is parallel to a side of the fluid element. Here τ11, τ22 and τ33 are the normal stresses,

while the other arrows represent tangential stresses. Lamb, following Euler and others in

this tradition, observes that “It is usual, however, in the first instance, to neglect the

“found a way to bring together the purely empirical engineering tradition of hydraulics and the purely
theoretical mathematical tradition of rational mechanics as it had developed in the 18th century”
([Heidelberger, 2006], 50). See also ([Darrigol, 2005], ch. 7) for more on Prandtl as well as [Darrigol, 2008]
for Darrigol’s discussion of the philosophical import of this history.
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tangential stresses altogether” ([Lamb, 1879], 2). With this simplification, it is possible

to identify the stresses applied to a fluid element with the differences in the scalar

pressure field across the faces of the element.3 The changes in velocity of a fluid element

due to internal forces will then be entirely due to the pressure gradients across the fluid

element in various directions: a higher pressure on one side will correspond to a push on

that side. Pressure was also a quantity that could be readily measured.

The basic idea behind the Euler equations is that, in line with Newton’s second law,

the acceleration that a fluid element undergoes must be equal to the forces applied to

that element divided by their mass. On the left side of these equations we collect all the

terms that reflect that acceleration or change in the velocity of the fluid element. On the

right side of these equations, we present each of the external and internal forces involved.

In Lamb’s notation, for spatial directions x, y, z, one such equation is4

du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz
= X − 1

ρ

dp

dx
(2)

Here u is the velocity of the fluid element in the x direction, X is the x component of the

externally impressed force (such as gravity) (per unit mass), ρ is the density of the fluid

and p is the pressure. Two other similar equations are available for v, the velocity of the

fluid element in the y direction, and w, the velocity of the fluid element in the z direction.

These three equations form the core of the mathematical theory of an ideal fluid. We

restrict our focus to a fluid whose density is a constant. The conservation of mass

3[Lamb, 1879], 2-3. See [Kundu and Cohen, 2008], 9-10 for a more thorough contemporary treatment.
4[Lamb, 1879], 5.
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requires

du

dx
+
dv

dy
+
dw

dz
= 0 (3)

These four equations characterize our five scalar quantities u, v, w, p and ρ throughout

the interior of the fluid. Once additional equations that cover the boundary of the flow

region are provided, a well-formed mathematical problem results. Many sorts of fluid flow

could be treated in this way, but for flows near solid boundaries, there was a manifest

disconnect between what the theory would predict and what measurements showed.

As Darrigol explains in his book, scientists quickly realized that the Euler equations

could not be used in any straightforward way to explain many observed cases of fluid

motion. In retrospect, it might seem obvious that one way forward would be to amend

Euler’s equations to take account of the tangential stresses applied to a fluid element in

addition to the normal stresses. However, a number of scientists explored other options.

For example, Helmholtz focused on vortex motion as the key to analyzing the effects of

the internal friction or viscosity of a fluid ([Darrigol, 2005], 148-159). If these rotations

in the fluid arose, how would they evolve and what effects would they have? These

investigations bypassed the tricky question of how vortex motion would arise. It seemed

natural to assume that a slightly viscous fluid would generate these vortices as it flowed,

but the mechanism for this generation remained unclear. Given this mystery, one can

appreciate why these researchers were reluctant to endorse the shift to the Navier-Stokes

equation approach. It seemed to abandon the promise of what had been achieved with

little assurance of success.

When Lamb comes to derive the Navier-Stokes equations in the last chapter of his

1879 Treatise, he notes that they have been derived by “Navier, Cauchy, Poisson, and
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others, on various considerations as to the nature and mutual action of the ultimate

molecules of fluids” ([Lamb, 1879], 221). By contrast, “The method adopted above,

which seems due in principle to de Saint-Venant and Stokes, is independent of all

hypotheses of this kind . . . ”. Still, Lamb continues, “it must be remembered that it

involves the assumption that pxx + p, pxy, &c. are linear functions of the coefficients of

distortion. Hence although (14) and (15) [the Navier-Stokes equations for compressible

and incompressible fluids, respectively] may apply with great accuracy to cases of slow

motion, [footnote] we have no assurance of their validity in other cases” ([Lamb, 1879],

221). The footnote refers to experiments by Maxwell as well as Helmholtz and

Piotrowski. Lamb goes on to mention Maxwell’s 1867 paper on the kinetic theory of

gases, which validated the Navier-Stokes equations in a dilute gas.

Lamb’s summary aligns quite well with Darrigol’s more thorough historical treatment

of viscosity ([Darrigol, 2005], ch. 3). On the one hand, it seemed necessary to build up

an account of viscous fluid motion by considering how fluid molecules would interact. On

the other hand, the forces governing this interaction were unknown and so their

employment could seem too speculative. Saint-Venant and Stokes tried to avoid these

worries by characterizing viscosity in non-molecular terms via the tangential stresses on

a fluid element. However, even this approach required an assumption of linearity that

Lamb at least worried would restrict the scope of the resulting equations.

To appreciate these concerns, we should return to figure 1. Here two tangential

stresses are τ13 and τ12. They involve stresses along the surface normal to the x1 axis in

the directions x3 and x2, respectively. These stresses would go along with distortions in

the shape of the fluid element, as when a cube is shifted over to form a parallelepiped

(figure 2). Following Stokes, Lamb supposed that the tangential stresses would be linear
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Figure 2: Parallelepiped

functions of the changes in velocities across the fluid elements.5 Lamb’s idea seems to be

that these velocity gradients would be small for a small fluid element, at least in certain

situations. One case that we will focus on is when the change in velocity u occurs over a

distance a like the radius of a tube. If the ratio u/a was small enough, the function in

question could be treated as if it were linear. These assumptions allow Lamb to

introduce a new constant µ and a new term into his equations for an incompressible fluid

([Lamb, 1879], 221):

du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz
= X − 1

ρ

dp

dx
+
µ

ρ
(
d2u

dx2
+
d2v

dy2
+
d2w

dz2
) (4)

Similar equations are available for v and w, with (3) staying the same. But what does µ

reflect? µ, the coefficient of viscosity, is a kind of friction: if a fluid is “moving in a series

of horizontal planes” ([Lamb, 1879], 219), one plane may be moving more slowly than its

neighbor. The slower plane will exert a retarding stress on the faster plane that is

proportional to the difference in velocity times the constant µ.6 µ is here assumed to be

5See [Darrigol, 2005], 135-140 for discussion of Stokes.
6See [Kundu and Cohen, 2008], 6-8, 100-104 for some discussion.
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an intrinsic feature of a fluid (at a given temperature), like its density ρ.

In summary, then, both the derivation of the Euler equations and the derivation of

Navier-Stokes equations were contentious. The Euler equations ignore tangential stresses

and this seemed to be partly responsible for their failure to capture a wide range of fluid

behavior. The Navier-Stokes equations did incorporate tangential stresses, but only via

assumptions about the linear character of certain terms. As these terms could not be

independently evaluated, a failure to apply the Navier-Stokes equations could be blamed

on this simplification. Similar issues arose for the boundary conditions that were needed

to use the Navier-Stokes equations in any concrete case: if the theoretical predications

failed to match the experimental measurements, then one could blame either the

equations or the boundary conditions. Until some additional progress was made on these

questions, it seemed prudent to remain cautious.

3. Poiseuille’s Law. Poiseuille’s scientific education began with a year at the famed

Ecole Polytechnique (1815-1816), where he studied with Cauchy, Ampére and Petit,

among others ([Sutera and Skalak, 1993], 1). Poiseuille later turned to the study of

medicine, although his work retains the emphasis on precision and measurement

characteristic of much of French science during this period.7 One major innovation of

Poiseuille’s doctoral work The force of the aortic heart was a new device for measuring

blood pressure. It was this focus on blood circulation or “hemodynamics” that later

motivated Poiseuille to investigate the flow of fluids through tubes. Glass tubes with

diameters from .015 to .6 mm were attached to a carefully constructed experimental

apparatus, and distilled water was driven through the tubes across a range of controlled

pressures. Poiseuille’s 1846 report on these experiments is over 100 pages long, and

7See, e.g., the discussion of Regnault in [Chang, 2004], 96-102.
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includes a detailed description of the way the experiment was conducted and the

resulting data. Equation (1) was obtained through a careful examination of this data

(see esp. §111 (512) and §129 (519) of [Poiseuille, 1846]).

Equation (1) proved to be remarkably wide in scope, applying not only to the flow of

water at various temperatures, but also to other fluids, and to tubes composed of

materials beside glass. However, knowing that the law held did not settle why the law

held. Poiseuille showed no interest in explaining his law using the purportedly more

basic equations for flow through pipes that Navier had formulated in the 1820s. As

Darrigol notes, Poiseuille “only mentioned Navier’s theory to condemn it for leading to

the wrong PR3/L law” ([Darrigol, 2005], 143). In his report Poiseuille emphasizes the

need to proceed empirically, without the use of Navier’s unwarranted “hypotheses”

concerning the interactions between fluid “molécules” ([Poiseuille, 1846], 435).

Darrigol notes how Poiseuille’s law was discovered before Poiseuille by the engineer

Gotthilf Hagen (1797-1884) ([Darrigol, 2005], 140). In 1839, Hagen used pipes that had a

larger diameter than Poiseuille’s, but were still quite thin, with diameters between 1 and

3 mm. Hagen obtained a formula that included a term for the “entrance effect” that

arises when the fluid enters the tube. Hagen also noted that his formula would fail to

apply beyond a certain threshold velocity. Darrigol concludes that “Hagen’s priority and

the excellence of his experimental method are undeniable” ([Darrigol, 2005], 141).

Prior to Lamb’s 1879 textbook, a number of authors had proposed a derivation of

Poiseuille’s law using the Navier-Stokes equation. Darrigol notes that “Helmholtz was

probably the first physicist to link the Navier-Stokes equation to the Hagen-Poiseuille

law” ([Darrigol, 2005], 143). In addition, Franz Neumann derived the law from the

Navier-Stokes equation by assuming a no slip boundary condition, which Darrigol
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reports was published by his student Jacobson in 1860. Additional proofs were provided

by Hagenbach in 1860 and Mathieu in 1863 ([Darrigol, 2005], 143).

4. Lamb’s 1879 Treatise vs. 1895 Hydrodynamics. Horace Lamb (1849-1934) was

a British physicist, trained at Cambridge, who prized the principled, theoretical

treatment of scientific phenomena. His 1879 textbook emphasized the importance of

theory from the beginning: it is an “attempt to set forth in a systematic and connected

form the present state of the theory of the Motion of Fluids” ([Lamb, 1879], v). In a

later address in 1904 Lamb emphasized the need for this kind systematic treatment, in

line with Rayleigh’s 1884 address: “It is ... essential that from time to time someone

should come forward to sort out and arrange the accumulated material, rejecting what

has proved unimportant, and welding the rest into a connected system” (given at

[Love and Glazebrook, 1935], 384). As the title of the 1879 book indicates, for Lamb the

right way to present things in a “systematic and connected” way is through a

“mathematical theory”. When Lamb revised and expanded this book in 1895 he gave it

the new title Hydrodynamics. This textbook became the standard reference in English

for the theory of fluid mechanics.

As noted already, nearly all of Lamb’s 1879 book relates to the theory of ideal fluids

where the main tool is the Euler equations. These equations are manifestly unable to

derive Poiseuille’s law. One way to appreciate the situation is to note that the

conservation of momentum requires that there is no pressure drop along the pipe as the

fluid flows through it. So if the velocity profile is uniform when the fluid enters the pipe,

it will continue to be uniform as it flows through the pipe. The rate of flow Q through a

circular pipe is the integral of the velocity profile across the area of section of the pipe.

For a constant velocity profile, this means that Q ∝ a2. So, for example, doubling the
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radius of the pipe from 1 cm to 2 cm should quadruple the rate of flow Q. But (1)

maintains that Q ∝ a4, so that doubling the radius of the pipe from 1 cm to 2 cm should

increase the rate of flow Q by a factor of 16. Poiseuille’s measurements of pressure

showed that the pressure was lower at one end of the pipe than the other. The flow

exhibited a kind of resistance that mandated a higher pressure at one end for the flow to

be steady.

In his 1879 textbook, right after deriving the Navier-Stokes equations, Lamb applies

them to the case of Poiseuille’s fluid flow through a circular pipe ([Lamb, 1879],

223-224).8 One crucial issue for such a flow is what one should suppose is going on at the

boundary between the fluid and the pipe. Now that one plane of fluid could slow down

another due to viscosity, it was natural to suppose that the unmoving walls of a pipe

would further retard the flow. In his 1879 discussion Lamb notes that some experiments

had found 0 velocity at the boundary (or “no slip”), while others had detected some

finite velocity (or “slip”) at the boundary. Lamb deals with this disagreement by

introducing a “coefficient of friction” β: as β gets bigger, the velocity is decreased more

rapidly by the friction between the wall and the fluid at the boundary. For the pipe flow

case, where r measures the radial direction away from the center of the pipe, the

boundary condition becomes

−du
dr

=
β

µ
u (5)

for r = a, the radius of the pipe. Additional simplifications arise for Poiseuille’s flow

once we assume that it is a special sort of steady flow: all velocities except those in the x

direction are 0. The original continuity equation can thus be simplified to du
dx

= 0. This

8See [Kundu and Cohen, 2008], 302-303, [Milnor, 1989], 11-17.
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allows the decomposition of the flow into thin shells or laminae, where the velocity in a

given shell is constant as we move down the pipe in the x direction. Lamb solves the

simplified system of differential equations so that

u =
1

4
A(r2 − a2)− 1

2

µa

β
A

where the constant A is identified with a term that involves the length of the pipe l and

the pressure drop across the pipe (p1 − p2):

A = −(p1 − p2)
µl

The velocity profile of the flow is thus a parabola whose apex is at the center of the pipe

(r = 0). To obtain the rate of flow of the fluid through the pipe (volume/time), Lamb

takes the spatial integral across a circular section of the pipe, obtaining

Q =
1

8

π

µ
a4

(p1 − p2)
l

+
1

2

π

β
a3

(p1 − p2)
l

(6)

Lamb notes that if no slip occurs at the boundary (β goes to infinity),

Q =
1

8

π

µ
a4

(p1 − p2)
l

(7)

This flow equation is Poiseuille’s law (1), with k = (1/8) π/µ. He adds that a comparison

of (7) “with experiments of this kind would give the means of determining µ”

([Lamb, 1879], 224). In these cases, then, one obtains a way to measure the coefficient of

viscosity µ.
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Although we have skipped over the mathematical subtleties, the theoretical

significance of this derivation should be clear. By deploying the Navier-Stokes equations

for viscous fluids, Lamb was able to theoretically derive (1). This shows that Poiseuille’s

k, which he found to vary with temperature, can be decomposed into a constant times

Lamb’s viscosity µ, which had been independently found to vary with temperature. In

addition, if we accept this derivation, we can make sense of the cases where Poiseuille’s

law holds and also diagnose two factors that would lead it to break down. For the law to

hold, the velocity of the fluid must go to zero at the boundary so that no slip occurs.

The law would then break down when some finite velocity of the flow occurred at the

boundary, as measured by Lamb’s coefficient of friction β. A more basic condition, tied

to the Navier-Stokes equations, is that the velocity profile of the flow must be in the

shape of a parabola, and not a constant. This is the way to recover the dependence

between the rate of flow and the fourth power of the radius of the pipe. The observed

resistance of the fluid to flowing through the pipe can be attributed to the viscosity of

the fluid.

It is fair to say that in 1879 Lamb was cautious about this particular derivation. He

recognized that he would have an explanation of Poiseuille’s law if the assumptions of

the derivation held for real fluid flows through circular tubes. But the scope of these

assumptions remained unclear. However, by 1895 the situation had changed considerably.

As we will see, in 1895 Lamb is now very confident in the no slip boundary condition and

in the treatment of µ. One major reason for this shift is Reynolds’ work in the 1880s.

Reynolds’ groundbreaking paper on fluid flow through pipes is “An experimental

investigation of the circumstances which determine whether the motion of water shall be

direct or sinuous, and of the law of resistance in parallel channels” from 1883. Some of
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Figure 3: Transition to turbulent flow (Reynolds 1901, 60)

the lessons of these experiments for Poiseuille’s law are clarified in “On the theory of

lubrication and its application to Mr. Beauchamp Tower’s experiments, including an

experimental determination of the viscosity of olive oil” from 1886.9 The 1883 paper

begins by noting two “leading features” that were thought to obtain for various fluid

flows. First, some fluid flows can be decomposed into straight lines, while others “eddy

about in sinuous paths the most indirect possible” ([Reynolds, 1901], 52). Second, for

some fluid flows, the resistance is proportional to the fluid velocity, while for others the

resistance is proportional to the square of the fluid velocity. If the resistance is not

proportional to the fluid velocity, but to the square of the velocity (or some other power

much greater than 1), then a given pressure gradient will generate much less fluid flow.

Reynolds’ first innovation was to refine the means to observe the formation of eddies

in fluids through the use of colored dyes. He first constructed an experimental apparatus

with a transparent tube that would allow one to observe the straight flow of the colored

water as it joined the flow of water through the tube. Then as the pressure differential

was increased, and the fluid velocity also increased, he could record the precise

circumstances under which the direct or “laminar” flow would break down. At a certain

point the flow would exhibit eddies that showed a kind of circular or vortex motion

(figure 3). This shift, to what became known as “turbulent” flow, coincided with the

9All page references to these papers are from the reprinted versions in [Reynolds, 1901].
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break down in the direct relation between resistance and velocity. The addition of eddies

disrupted the smooth flow and required greater pressure differences to sustain a given

rate of fluid flow.

The transition from laminar to turbulent flow should be somehow tied to the

viscosity of the fluid. Reynolds supposed that the laminar flow was more or less

unstable, but that a laminar flow could be maintained if the viscosity of the fluid

dampened any nascent eddying motion of the fluid. However, at some point, this

damping tendency would be overcome, and the flow would become turbulent. Despite

this insight, Reynolds lacked any direct theoretical treatment of the transition for one

obvious reason: the mathematics of the Navier-Stokes equations was too complicated to

handle except for special cases like the steady, laminar flows that Lamb had supposed in

his derivation of (7). The transition from laminar to turbulent flow involves an especially

tricky case of unsteady flow, where some dramatic changes occur in the velocities of the

fluid elements. So Reynolds was forced to rely on other methods to understand how

turbulent flow could arise.

The failure to explain the breakdown of laminar fluid flow suggested to Reynolds

some broader gaps in our understanding: “This accidental fitness of the theory to explain

certain phenomena while entirely failing to explain others, affords strong presumption

that there are some fundamental principles of fluid motion of which due account has not

been taken in the theory” ([Reynolds, 1901], 53). Reynolds’ major theoretical innovation

was to use the Navier-Stokes equations to arrive at a ratio that he argued should mark

the transition from laminar to turbulent flow. This ratio is now called the Reynolds

number: cρU
µ

([Reynolds, 1901], 55). c is some length like the radius of the pipe, ρ is the

density, U is a velocity and µ is the viscosity. Reynolds proposed that the transition
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from laminar to turbulent flow occurred when this number exceeded some threshold,

which he tried to determine experimentally.10 After examining a wide range of flows that

systematically varied the radius c, the velocity U and the viscosity µ, Reynolds showed

how the relationship between resistance and velocity shifted in the same way at the same

critical point.11 As he summarized these results in his 1886 paper, for circular tubes the

proposed critical value for this parameter was 1400 ([Reynolds, 1901], 238). Below this

value, the flow would be direct and conform to Poiseuille’s law, while above this value

the flow would be turbulent and Poiseuille’s law would no longer apply.

For our purposes, the main achievements of this work by Reynolds are tied to how

they provided a kind of validation of Lamb’s treatment of viscosity. To start, Reynolds

emphasized how widely (7) obtained, for tubes of various sizes and composition, and for

a wide range of pressures and fluid velocities: in a first series of experiments “Up to

these critical velocities the discharge from the pipes agreed exactly with those given by

Poiseuille’s formula for capillary tubes” ([Reynolds, 1901], 64), and in a second series of

experiments, “it is a matter of no small interest to find that the formula of discharges

which he [Poiseuille] obtained from these experiments [as reported in [Poiseuille, 1846]] is

numerically exact for the bright metal tubes 100 times as large” ([Reynolds, 1901], 92).

Two conclusions seemed warranted. First, there was strong experimental evidence in

favor of the “no slip” boundary condition, as any slip at the boundary would introduce

some systematic deviations from what (7) required. Second, Lamb’s focus on the

magnitude of the velocities in his treatment of viscosity could be shown to be

10See [Langhaar, 1951], 24 for a modern reconstruction of Reynolds’ reasoning. However Darrigol
discusses the gap between modern dimensional analysis and Reynolds’ discussion, noting that the “legend”
of Reynolds’ reasoning began with Stokes ([Darrigol, 2005], pp. 255-258).

11Reynolds varied the viscosity by varying the temperature of the fluid.
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fundamentally misguided. Early in his 1886 paper Reynolds considers two different

theoretical treatments of viscosity under the heading “The Two Viscosities”

([Reynolds, 1901], 236). Reynolds cites Lamb and notes that “it has been supposed that

µ varied with the rate of distortion – i.e., is a function of u/a, but is sensibly constant

when u/a is small” ([Reynolds, 1901], 236). The motivation for this treatment is that in

certain circumstances a constant viscosity can be used to explain the character of the

fluid flow, as in Lamb’s derivation of (7). But in other situations, where resistance varies

as the square of the velocity, µ cannot be treated as a constant “unless a restricted

meaning be given to the definition of viscosity, excluding such part of the resistance as

may be due, in the way explained by Prof. Stokes, to internal eddies or cross streams ...”

([Reynolds, 1901], 236). Armed with his analysis of the transition from laminar to

turbulent flow, Reynolds argues that we should treat viscosity as a constant for a fluid at

a given temperature. Lamb’s attempt to limit the scope of the Navier-Stokes equations

in terms of a ratio like u/a is thus misguided. There are cases where the ratio between u

and a, the radius of the tube, is small, and yet (1) fails, and also cases where the ratio is

very large, and yet (1) holds. The true parameter that distinguishes these cases is auρ
µ

,

which takes the viscosity µ to be a “physical property of the fluid which is independent

of its motion” ([Reynolds, 1901], 237).

Although there were many developments in fluid dynamics between 1879 and 1895,

when we consider Lamb’s 1895 treatment of Poiseuille’s law, it seems clear that

Reynolds’ work played a major role in Lamb’s revisions. One symptom of this change is

that Lamb is now very confident in his no slip boundary condition and also in his linear

treatment of tangential stresses. After presenting his derivation of Poiseuille’s law from

the Navier-Stokes equations, Lamb now adds that “This last result is of great
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importance as furnishing a conclusive proof that there is in these experiments no

appreciable slipping of the fluid in contact with the wall” ([Lamb, 1895], 521). This is

because, for the quantities at issue, “a deviation from the law of the fourth power of the

diameter, which was found to hold very exactly, would become apparent” ([Lamb, 1895],

522). Here Lamb cites an 1890 paper by Whetham, who tested Poiseuille’s law for tubes

made up of materials besides glass [Whetham, 1890].12 This additional experimental

work seems to have played an important part in convincing Lamb that the no slip

condition applied quite widely. Lamb thus rejects the results of Helmholtz and

Piotrowski that indicated some finite slip velocity.

However, some more significant changes are tied to Reynolds’ treatment of laminar

flow. In his 1895 derivation of the Navier-Stokes equations, Lamb now initially motivates

his linear approach to tangential stresses via simplicity: “The simplest hypothesis we can

frame on this point is that these functions are linear” ([Lamb, 1895], 511). After deriving

the equations, he repeats that his hypothesis “is of a purely tentative character . . . we

have so far no assurance that it will hold generally” ([Lamb, 1895], 513). Lamb

continues, though, by noting the argument from the 1886 paper by Reynolds:

It has however been pointed out by Prof. Osborne Reynolds that the

equations based on this hypothesis have been put to a very severe test in the

experiments of Poiseuille and others . . . Considering the very wide range of

values of the rates of distortion over which these experiments extend, we can

hardly hesitate to accept the equations in question as a complete statement

of the laws of viscosity ([Lamb, 1895], 513).13

12This shift in Lamb’s treatment of the no slip boundary condition is noted by [Day, 1990].
13Lamb also here notes the work by Maxwell on the kinetic theory of gases that informed the note to
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As we have seen, Poiseuille’s law breaks down in certain special circumstances that

Reynolds argued were tied to the Reynolds number. This convinced Lamb that the

treatment of viscosity in terms of µ was legitimate, even when the ratio u/a was not

small. For if one could only treat viscosity in terms of µ when this ratio small, then the

Navier-Stokes equations would not apply to fluid flow through pipes when the ratio was

not small. And if the Navier-Stokes equations failed for such a flow, then the flow would

not conform to Poiseuille’s law. But Reynolds found that Poiseuille’s law in fact applied

to many high velocity flows. So it is no surprise to find that Lamb changes his attitude

towards the use of Poiseuille’s law to measure viscosity. Whereas in 1879 he said only

that “A comparison of the formula ([7]) with experiments of this kind would give the

means of determining µ”, in 1895 Lamb writes that “The assumption of no slipping

being thus justified, the comparison of the formula ([7]) with experiment gives a very

direct means of determining the value of the coefficient µ for various fluids”

([Lamb, 1895], 522).

In summary, Lamb’s treatment of tangential stresses in terms of a constant µ was

initially a mathematical simplification with little theoretical basis. After Reynolds’ work,

there was still no satisfying theoretical explanation for why µ was a constant or how a

given value for µ could be determined by the more basic characteristics of the fluid

molecules. However, what Reynolds offered was experimental support for Lamb’s

treatment of viscosity. If we add to our theory of these fluids that µ is a physical

property of the fluid (at that temperature), then we can explain the wide range of

application of (1). In addition, we have the beginnings of an understanding of turbulent

flow based on Reynold’s criterion for when turbulent flow would arise.

the 1879 edition that I discuss below in section 5. This note, however, does not appear in the 1895 edition.
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5. Explanation and Idealization. The work by Lamb and Reynolds that we have

reviewed involves an intricate interplay of experimental and theoretical considerations.

From a philosophical perspective, perhaps the most striking aspect of their discussions of

Poiseuille’s law is the prominent use of explanatory language. In this section I offer a

reconstruction of their reasoning that involves three claims. First, to make sense of when

a derivation that incorporates an idealization should count as an explanation, we must

consider the subject matter of the derivation. Second, these derivations can be used to

provide causal explanations using the interventionist account developed by Woodward.

Third, when these explanations are accepted, they have additional heuristic benefits in

facilitating new and important discoveries.

It seems that practitioners like Rayleigh, Lamb and Reynolds identify an explanation

of Poiseuille’s law with a derivation from the Navier-Stokes equations. When these

equations are supplemented by the no slip boundary condition and additional

assumptions like the steadiness of the flow, it is fairly straightforward to derive this law.

However, this does not settle what makes this derivation explanatory. So we should

consider what makes some derivations explanatory, especially when idealizations are

involved.

Most recent philosophical discussions of scientific explanation begin with Hempel and

Oppenheim’s famous “deductive-nomological” (D-N) account of explanation.14 On this

account, an explanation consists in a deductively valid argument whose conclusion is the

statement to be explained. This argument must include at least one scientific law and all

of the premises must be true.15 It might seem like a D-N approach is in a good position

14I am grateful to an anonymous referee for urging me to make clearer the links between this case and
the accounts of explanation offered by Hempel and Kitcher.

15See [Hempel, 1965], ch. 10, 12 for classic discussion as well as [Salmon, 1989] for some now classic
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to make sense of how the Navier-Stokes equations explain Poiseuille’s law through the

derivation of that law from the equations. However, there is a well-known problem with

the D-N approach when it is used to make sense of how one law can be used to explain

another law. This problem was conceded by Hempel and Oppenheim in what Salmon

calls a “notorious” footnote. As Hempel and Oppenheim put the worry:

The precise rational reconstruction of explanation as applied to general

regularities presents peculiar problems for which we can offer no solution at

present . . . The problem . . . arises of setting up clear-cut criteria for the

distinction of levels of explanation or for a comparison of generalized

sentences as to their comprehensiveness. The establishment of adequate

criteria for this purpose is as yet an open problem ([Hempel, 1965], 273).

As Hempel and Oppenheim sought to characterize this relationship in formal terms, they

found this problem to be intractable. It is not clear how to make the Navier-Stokes

equations or Poiseuille’s law count as genuine laws on this approach, or what would

ensure that the former was in an appropriately distinct level than the latter.

Arguably, the same sort of problem arises for other approaches that try to single out

a special sort of derivation as an explanation. Kitcher has claimed that a derivation is an

explanation when that derivation is an instance of a schema that is widely instantiated

[Kitcher, 1989]. The unifying power of the argument schema makes its instances explain

their conclusions. Whatever the merits of this approach in other cases, it is difficult to

see how it can work for our derivation of Poiseuille’s law. The specific steps in the

derivation are tailored to the derivation of that very law. So if Kitcher wants to

objections.
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emphasize these specific steps, then he will find that this derivation is not widely

instantiated, and so not explanatory. Of course, Kitcher could respond that he means to

consider any derivation that begins with the Navier-Stokes equations and ends with

some law that is to be explained. The so-called “filling instructions” for such a

derivation would thus be quite flexible and open-ended. One worry for this proposal is

that there is no longer any illuminating characterization of the argument schema. The

source of the explanatory power of the instances is no longer clear.

More recently, Baron has tried to retain the basic idea that some derivations are

explanations by imposing additional conditions tied to relevance logic [Baron, 2019].

Baron aims here to pin down what is special about “mathematical explanations” as

opposed to ordinary scientific explanations that use mathematics. That contrast is not

my focus here.16 What is interesting about Baron’s proposal for this paper, though, is

that it identifies some explanations with “sound R-arguments, where an R-argument is

an argument in which all of the information contained within the conclusion of the

argument is contained in the premises, and each premise contributes some part of the

information contained within the conclusion” ([Baron, 2019], 712). One could appeal to

“information” to identify when a given derivation is explanatory, and it might seem like

this condition marks an improvement over Hempel, Oppenheim and Kitcher. Arguably,

all the information contained in Poiseuille’s law is to be found in the premises of the

derivation. This is because we have a genuine derivation where the truth of the premises

would guarantee the truth of the conclusion. In addition, each premise offered by Lamb

seems to contribute some of that information.

One worry about Baron’s proposal is that there are many derivations that meet this

16See [Bangu, 2020] for another recent contribution to this debate.
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informational condition and yet fail to explain. Consider, for example, a small-scale

concrete model of a ship. Information about the drag that this model ship experiences in

the laboratory along with appropriate scaling laws is sufficient to derive the drag that a

full-scale version of the ship experiences. As we have a derivation, all the information

contained in the conclusion is found in the premises. Also, each premise contributes

some of that information. But it is quite plausible that this derivation does not explain

the drag experienced by the full-scale version of the ship. As we might put it, the

derivation indicates what drag would be experienced, but not why that drag would

occur. Baron could reply that this objection ignores some of the other conditions that he

imposes on his explanatory derivations. These seem to relate to what would make such

an explanation into a mathematical explanation, and so it is hard to see their

significance. For example, Baron says that the notion of information he is working with

is “semantic information” and that his theory aims to “provide a partial account of what

kind of information explanatory information is: it is information that features in

relationships of informational containment where those relationships involve

mathematical facts essentially” ([Baron, 2019], 701). If we ignore the question of when

such a derivation is a specifically mathematical explanation, then all we are left with is

the condition of “informational containment”. As informational containment is too weak

a condition for a derivation to count as an explanation, it is hard to see why a derivation

that meets the informational containment test through an essential appeal to a

mathematical fact is thereby explanatory.

One common reaction to these problems is that one should not focus on how

information about the conclusion is provided, but instead on a special sort of

information, no matter how it is provided. Woodward in particular has argued that a
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derivation that provides the right kind of causal information about its conclusion should

count as an explanation. According to Woodward a causal explanation includes a causal

generalization along with a specification of the actual values of the causal variables

mentioned in that generalization [Woodward, 2003]. A generalization is a causal

generalization when it indicates how an intervention that changes the values of some

variable would result in a change in some other variable. For example, both the

Navier-Stokes equations and Poiseuille’s law count as causal generalizations. Equation

(4) indicates that an intervention on the viscosity µ of some fluid would change the value

of the left-hand side of the equation that tracks the acceleration of the fluid element.

Similarly, as emphasized earlier, (1) indicates that doubling the radius of the pipe a

through an intervention would increase the flow rate Q by a factor of 16. How, though,

can a derivation of (1) using (4) count as a Woodward-style causal explanation? The

derivation is explanatory just in case it identifies interventions on causal variables that

would disrupt the law being explained, here (1). One clear way in which this occurs

concerns the role of viscosity in (1). If the value of µ is changed or even set to 0 through

an intervention, then this would disrupt a fluid flow that conformed to (1). As we have

seen, setting µ = 0 would render the fluid inviscid. So if the initial entry velocity profile

of the flow was uniform, the parabolic velocity profile would become uniform. The

derivation indicates, then, how the law being explained could be disrupted.

A major issue for this sort of explanation is that the derivation includes false claims

that Lamb and others are aware are false. I will call such a claim an idealization.

Idealized derivations pose a problem for all the views we have considered, so it is worth

considering if Woodward’s approach has any special advantage on this front. Before

turning to Woodward, I summarize an interesting discussion by Lamb in 1879 that goes
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some way to addressing this worry for the fluid dynamics case. Lamb begins his book

with the following remark:

The following investigations proceed on the assumption that the fluids with

which we deal may be treated as practically continuous and homogeneous in

structure; i.e. we assume that the properties of the smallest portions into

which we can conceive them to be divided are the same as those of the

substance in bulk. It is shewn in note (A), at the end of the book, that the

fundamental equations arrived at on this supposition, with proper

modifications of the meanings of the symbols, still hold when we take account

of the heterogeneous or molecular structure which is most probably possessed

by all ordinary matter ([Lamb, 1879], 1).17

If we can see how Lamb proposes to handle this “continuum” idealization, then we will

be in a good position to consider how he might address any others that arise in his

derivations.

Lamb’s rough strategy is to defend what I will call a matching claim. For a

derivation D of some theorem T that relies on an assumption A that is unjustified or

believed to be false, the matching claim is that there is some corrected derivation D′ of

T that replaces A with some truth A′. As Lamb suggests, the corrected derivation can

arise from a reinterpretation of the claims of the original derivation. To illustrate this

idea, we can consider Lamb’s derivation of the Euler equations. The matching claim for

this derivation is that there is another derivation of those very same equations that

correctly describes the molecular structure of fluids. One way to justify a matching claim

17The second sentence and the note are removed in the 1895 edition.
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is to actually present this revised derivation. However, when the true character of fluids

is unknown or too complicated to capture, an indirect justification of the matching claim

is required. This is what Lamb offers in his note.

The key idea is that the fluid elements are large enough so that the fluctuating

motions of individual molecules are insignificant: “We suppose the ‘elements’ above

spoken of to be such that each of their dimensions is a large multiple of the average

distance (d, say,) between the centres of inertia of neighboring molecules” ([Lamb, 1879],

232). When this condition is met, the dynamical behavior of the fluid elements in a real,

discontinuous fluid will match the dynamical behavior of the fluid elements composed of

a completely continuous and homogeneous stuff. As Lamb puts it after fleshing out how

his terms are to be interpreted in terms of molecules, “The effect of the foregoing

definitions is to replace the original (molecular) fluid by a model, made of an ideal

continuous substance, in which only the main features of the motion are preserved”

([Lamb, 1879], 233, emphasis added). There is no rigorous mathematical proof that the

correspondence is complete or that it will hold in all circumstances. However, Lamb

takes himself to provide enough evidence of a match between the model and its target

for the features of interest and fluid regimes that are his focus. Crucially, Lamb goes on

to reexamine his treatment of tangential stresses in the derivation of the Navier-Stokes

equations.18 This involves comparing the actual stress on an element to the apparent

stress. This apparent stress includes a correction for the transfer of molecules and their

momenta across the element boundary. Lamb notes that “The apparent stress is what is

really observed in all experiments in fluids. It is in fact the stress which must hold at any

18Lamb here notes that he is following Maxwell’s 1867 paper “On the Dynamical Theory of Gases”,
which is reprinted in [Maxwell, 1890].
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point of the continuous model above spoken of, in order that the model may work

similarly to the original” ([Lamb, 1879], 236).

On this approach, an explanation of some real phenomenon can employ a

mathematical model that fails to accurately represent the real phenomenon in significant

respects. In Lamb’s case, he admits that real fluids are composed of molecules, while his

model fluids are continuous. However, the explanation is genuine so long as there is the

right kind of match between the features exhibited by the mathematical model and the

features of the real phenomenon.19 Woodward’s interventionist approach can be used to

motivate one kind of matching that is sufficient for an idealized derivation to explain:

the idealized derivation must correctly indicate some interventions that would disrupt

the law being explained. As just noted for the derivation of Poiseuille’s law, the relation

Q ∝ a4 holds in both the mathematical model and the real phenomenon. In addition,

the derivation indicates a reason for why Q ∝ a4 holds in the real phenomenon. Lamb’s

derivation proceeds through the Navier-Stokes equation, with its treatment of viscosity,

and the no slip boundary condition. So if real fluids are viscous in the way required, and

also exhibit no slip at the boundary, we can consider a steady flow that is decomposed

into shells or laminae. If the entry profile is uniform, at some later point in the flow the

velocity profile would be a parabola with u = 0 at the boundary. This is a genuine

explanation for why Q ∝ a4. It is not required that real fluids be viscous in the way

required at all spatial scales, but only for spatial scales corresponding to the size of

Lamb’s model elements. For as long as a match is obtained at this scale, both the real

fluid and the model fluid will develop a parabolic velocity profile, and this profile will

19For some more general discussion of how idealized models can explain, see [Bokulich, 2017],
[Potochnik, 2017] and [Pincock, 2021].

30



develop for the very same reasons. This indicates how the relation Q ∝ a4 that is being

explained could be altered through an intervention.

It remains to discuss the heuristic benefits afforded by the explanation of Poiseuille’s

law using the Navier-Stokes equation along with the no-slip boundary condition.

Schematically, we have a situation where some theory provides an explanation of one

phenomenon, and a scientist takes this explanation for granted in the investigation of

some other phenomenon. This explanation will provide a heuristic benefit to the extent

that it facilitates the discovery of some new features of the other phenomenon. I suggest

that there are two kinds of heuristic benefits to consider in such a case. First, if the two

phenomena are thought to be appropriately related, then the scientist may be

encouraged to pursue an explanation of the new phenomenon based on the accepted

explanation of the old phenomenon. When some explanations are adopted, this makes

scientists more confident that new phenomena also have explanations that are waiting to

be discovered. Second, if the two phenomena are connected in an especially strong way,

then the scientist may try to arrive at an explanation of the new phenomena by adapting

the accepted explanation of the old phenomenon. The scientist supposes that there is

some common explanatory framework that can be used to account for both the

similarities and the differences between the two phenomena.

I claim that both sorts of heuristic benefit are present in Reynolds’ investigation into

the transition from laminar to turbulent flow. In this case, the wide scope of Poiseuille’s

law helped to establish the wide scope of the Navier-Stokes equation and the no-slip

boundary condition. Reynolds accepted this explanation of Poiseuille’s law. As noted

earlier, he also used explanatory language to characterize the situation, and noted the

contrast between the accepted explanations of some phenomena and the
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as-yet-unexplained character of other fluid phenomena: “This accidental fitness of the

theory to explain certain phenomena while entirely failing to explain others, affords

strong presumption that there are some fundamental principles of fluid motion of which

due account has not been taken in the theory” ([Reynolds, 1901], 53). This passage

indicates the first sort of heuristic benefit noted above: when Reynolds accepted the

explanation of Poiseuille’s law, he became more confident that the related phenomenon

of the transition from laminar to tubulent flow would also have an explanation. He did

not assume that the Navier-Stokes equations by themselves would be adequate to

provide this explanation. He says that there may be “some fundamental principles” that

are missing from the theory, and that would prove adequate to explain the transition.

Still, it is clear that the Navier-Stokes equations were the starting point of Reynolds’

theoretical investigations. By contrast, we can imagine a scientist who was not aware of

the explanation of Poiseuille’s law. They would not be similarly encouraged to pursue an

explanation of the transition from laminar to turbulent flow based on the Navier-Stokes

equations for the simple reason that it would be unclear if this transition had an

explanation, or if these equations even applied to such cases.

The second kind of heuristic benefit involves trying to apply a common explanatory

framework to the two phenomena. This is a plausible description of Reynolds’ approach

to the transition from laminar to turbulent flow. It is clear that the explanation of

Poiseuille’s law needs to be substantially changed in order to address this transition. In

particular, an initial assumption of this explanation is that the flow can be decomposed

into a series of thin shells that move at different velocities in the x direction. The onset

of turbulent flow involves the disruption of this assumption. So the explanation of

Poiseuille’s law is powerless to indicate why such a disruption occurs. Still, the disruption
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of this assumption could provide Reynolds with a starting point for his reflections on this

change. As noted above, he arrived at his criterion for the transition by considering the

relative magnitude of the terms in the Navier-Stokes equations. His hunch was that the

transition resulted from the “inertial” terms overcoming the damping provided by the

“viscous” terms. If the relative magnitudes of these terms went along with the

transition, then one would expect measurements of the ratio of their values for various

instances of that transition to agree. This is what Reynolds found when he conducted

his experiments. This experimental verification provided even more encouragement for

Reynolds to pursue his theoretical account of the transition to turbulence.20

It is important to emphasize that a heuristic benefit obtains when the discovery of

some new result is facilitated. By this I mean that the discovery was easier than it

otherwise would have been. A heuristic benefit is thus neither essential nor sufficient to

the discovery. Even without the explanation of Poiseuille’s law, it would certainly have

been possible for Reynolds to arrive at his criterion. I am only claiming that it was

easier for him to arrive at this discovery once he had the explanation in hand. Also, once

Reynolds had the explanation of Poiseuille’s law, it was not guaranteed that he would

have arrived at his criterion. It took additional insight and creativity to arrive at this

proposal.

6. Conclusion. Schematically, the process that we have seen involves a fruitful

interaction between experiment and theoretical explanation. An experimental law is

identified, here Poiseuille’s law. Then various theoretical explanations of that

20See [Launder, 2014] for some discussion of Lamb’s reactions to Reynolds’ theoretical innovations in
an 1895 paper. Lamb emphasizes that the transition to turbulence is “the chief outstanding difficulty of
our subject” ([Lamb, 1895], 572), and notes Reynolds’ proposal without endorsing it ([Lamb, 1895], 579).
See [Darrigol, 2005], 260-262 for some discussion.
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experimental law are attempted. One explanation is then singled out for further

scrutiny. If a threshold of evidence is reached, the otherwise contentious elements of this

explanation may be accepted, in part because they afford a satisfying explanation. It

then becomes feasible to exploit the theoretical treatment of the first experimental law

to identify new opportunities for new experimental laws to be isolated. In our case, this

new experimental law concerns the transition from laminar to turbulent flow based on

the Reynolds number for the flow. The new experimental law then cries out for a new

theoretical explanation, which may in turn validate new theoretical assumptions. In the

case of turbulence, it is hard to exaggerate the theoretical significance of the transition

that Reynolds sought to explain. It remains one of the most significant aspects of active

investigation into fluid dynamics. Here, then, we have a case where mathematical

derivations of experimental laws have been accorded significant scientific value as

providing explanations. In addition, these explanations arguably have heuristic benefits

for the ongoing process of scientific discovery.

Acknowledgements. This case was central to a paper presented during a symposium

at the Pacific Division Meeting of the American Philosophical Association in March 2016

and the Philosophy Colloquium at the Leibniz Hannover University in June 2016. I am

grateful to both audiences for their feedback, especially Alisa Bokulich, Uljana Feest,

Mathias Frisch and Michael Strevens. This paper was substantially revised for this

special issue. I am very much indebted to the two anonoymous referees and the editors

for their help in developing the paper for publication.

34



References

[Bangu, 2020] Bangu, S. (2020). Mathematical explanations of physical phenomena.

Australasian Journal of Philosophy, forthcoming.

[Baron, 2019] Baron, S. (2019). Mathematical explanation by law. British Journal for

the Philosophy of Science, 70:683–717.

[Bogen and Woodward, 1988] Bogen, J. and Woodward, J. (1988). Saving the

phenomena. The Philosophical Review, 97:303–352.

[Bokulich, 2017] Bokulich, A. (2017). Models and explanation. In Magnini, L. and

Bertolotti, T. W., editors, Springer Handbook of Model-Based Science, pages 103–118.

Springer.

[Chang, 2004] Chang, H. (2004). Inventing Temperature: Measurement and Scientific

Progress. Oxford University Press.

[Darrigol, 2005] Darrigol, O. (2005). Worlds of Flow: A History of Hydrodynamics from

the Bernoullis to Prandtl. Oxford University Press.

[Darrigol, 2008] Darrigol, O. (2008). Empirical challenges and concept formation in the

history of hydrodynamics. Centaurus, 50:214–232.

[Day, 1990] Day, M. A. (1990). The no-slip condition of fluid dynamics. Erkenntnis,

33:285–296.

[Heidelberger, 2006] Heidelberger, M. (2006). Applying models in fluid dynamics.

International Studies in the Philosophy of Science, 20:49–67.

35



[Hempel, 1965] Hempel, C. (1965). Aspects of Scientific Explanation and Other Essays

in the Philosophy of Science. Free Press.

[Kitcher, 1989] Kitcher, P. (1989). Explanatory unification and the causal structure of

the world. In Kitcher, P. and Salmon, W., editors, Scientific Explanation, pages

410–505. University of Minnesota Press.

[Kundu and Cohen, 2008] Kundu, P. K. and Cohen, I. M. (2008). Fluid Mechanics.

Academic Press, Fourth edition.

[Lamb, 1879] Lamb, H. (1879). A Treatise on the Mathematical Theory of the Motion of

Fluids. Cambridge University Press.

[Lamb, 1895] Lamb, H. (1895). Hydrodynamics. Cambridge University Press.

[Langhaar, 1951] Langhaar, H. L. (1951). Dimensional Analysis and Theory of Models.

Wiley and Sons.

[Launder, 2014] Launder, B. E. (2014). Horace Lamb & Osborne Reynolds: Remarkable

Mancunians . . . and their interactions. Journal of Physics: Conference Series,

530:012001.

[Love and Glazebrook, 1935] Love, A. E. H. and Glazebrook, R. T. (1935). Sir Horace

Lamb, 1849-1934. Obituary Notices of the Fellows of the Royal Society, 1:374–392.

[Maxwell, 1890] Maxwell, J. C. (1890). The Scientific Papers of James Clerk Maxwell,

volume 2. Cambridge University Press.

[Milnor, 1989] Milnor, W. R. (1989). Hemodynamics. Williams and Wilkins, Second

edition.

36



[Pincock, 2021] Pincock, C. (2021). A defense of truth as a necessary condition on

scientific explanation. Erkenntnis, forthcoming.

[Poiseuille, 1846] Poiseuille, J. L. M. (1846). Recherches expérimentales sur le

mouvement des liquides dans les tubes de très-petits diamètres. Mémoires presentés
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