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ABSTRACT

This paper defends three claims about concrete or physical models: (i) these models

remain important in science and engineering, (ii) they are often essentially idealized, in

a sense to be made precise, and (iii) despite these essential idealizations, some of these

models may be reliably used for the purpose of causal explanation. This discussion of

concrete models is pursued using a detailed case study of some recent models of landslide

generated impulse waves. Practitioners show a clear awareness of the idealized character

of these models, and yet address these concerns through a number of methods. This paper

focuses on experimental arguments that show how certain failures to accurately represent

feature X are consistent with accurately representing some causes of feature Y, even when

X is causally relevant to Y. To analyse these arguments, the claims generated by a model

must be carefully examined and grouped into types. Only some of these types can be

endorsed by practitioners, but I argue that these endorsed claims are sufficient for limited

forms of causal explanation.
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1 Introduction

Some philosophers of science have recently emphasized that model-based sci-

ence is helpfully distinguished from a more direct investigation or experimen-

tation with target systems.1 This paper considers and resolves a worry about a

certain kind of target-directed modelling. The worry arises when scientists are

focused on a repeatable type of target system which, following Bogen and

Woodward ([1988]), I will call a phenomenon. When a model is devised for a

phenomenon, the scientists using the model often believe that the model is

misrepresenting the phenomenon in some ways. In certain cases, this sort of

misrepresentation is unavoidable. As I clarify in Section 2, the model is thus

essentially idealized. The worry about essentially idealized target-directed

models is that they do not seem to be able to extend our knowledge of phe-

nomena. For this sort of model to extend our knowledge of the phenomenon,

its misrepresentations would have to be somehow identified and corrected.

But in model-based science we typically lack the prior knowledge of the phe-

nomenon that would allow this sort of correction. The upshot of these con-

siderations is the conclusion that model-based science is not actually able to

extend our knowledge. At best, modelling is a heuristic source for possible

features of phenomena. The worry seems especially clear for explanations of

features of the target phenomenon. An essentially idealized model does not

seem able to license explanations, but only suggest them.2

I reject this sceptical worry: sometimes an essentially idealized model can

license causal explanations of aspects of phenomena. To argue for this con-

clusion, I must first clarify how I am using some contentious terms like ‘model’

and ‘idealization’. That is the aim of Section 2. I focus on a special kind of

target-directed modelling, where the model is physical or concrete. The de-

tailed case study that I develop in Sections 3 and 4 considers models of land-

slide generated impulse waves. These are naturally occurring waves in bodies

of water that result from landslides. Although these models involve a range of

idealizations, there are ingenious ways to identify and avoid endorsing the

falsehoods associated with these idealizations. This means that the indirect

strategy of studying these models to learn about these waves can be vindicated.

There is good experimental evidence that the model is reliably generating

accurate claims about some of the causes of these waves. These accurate

claims are sufficient for causal explanations of certain features of landslide

generated impulse waves.

One upshot of this discussion is that we can appreciate why concrete models

remain important to science and engineering. They afford the means to extend

1 See especially (Godfrey-Smith [2006]; Weisberg [2007b]; Weisberg [2013]).
2 See, for example, (Jebeile and Kennedy [2015]; Rice [2019]). Others draw the conclusion that

explanation does not require truth, as in (Cartwright [1999]; Suárez and Cartwright [2008]).
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our knowledge of phenomena, even when the character of the phenomena

precludes direct investigation and experimentation. The indirect strategy of

model-based science introduces some obstacles in the form of essential ideal-

ization, which in our case are tied primarily to the smaller spatial scale of the

concrete models. But this smaller size also permits careful manipulation and

experimentation on the models that is sufficient to generate assurances that

many of the claims generated by the model are true of relevant aspects of the

phenomenon of interest.3

2 Models, Essential Idealization, and Selective Endorsement

In a recent paper, Frigg and Nguyen ([2018], p. 206) consider what they call a

‘material’ model that involves ‘a material object [being] used as a model that

represents a certain target system’.4 Weisberg ([2013], p. 7) has also singled out

the same kind of model using the term ‘concrete model’: ‘Roughly speaking,

concrete models are physical objects whose physical properties can potentially

stand in representational relationships with real-world phenomena’. Frigg,

Nguyen, and Weisberg all agree that these models may stand in representa-

tional relationships to target phenomena, but they propose somewhat differ-

ent accounts of what these representational relationships amount to. Frigg

and Nguyen develop what could be called an exemplification/translation ac-

count of representation. First, a model comes to exemplify some of its fea-

tures. Second, some of the exemplified features of the model may be attributed

to a target system, typically after they have been transformed using a trans-

lation key. When these two stages are combined, we have a model that rep-

resents a target in a certain way. These ways can be associated with

propositions of the form ‘exemplified model feature X is found in the target

as feature Y’, where Y is what results when the translation key is applied to X.

Weisberg develops a somewhat different proposal for model representation

that he calls a feature-matching account. First, scientists identify a set of fea-

tures that are potentially shared by a model and its target. Second, the features

are assigned weights in terms of a weighting function that reflects their relative

importance for the modelling task at hand. Once these two elements are in

place, there is some measure of the similarity between the model and the

target. As with Frigg and Nguyen, this measure can be decomposed into

propositions of a certain form: ‘model feature X is present (or absent) in the

target’.

Despite their disagreement on the nature of the representational relation-

ship, there is a clear consensus on two points. To start, there are concrete

3 My discussion is very much indebted to Sterrett’s pioneering work on concrete models; see

especially (Sterrett [2017a], [2017b]).
4 See also (Frigg and Nguyen [2017]) for their survey of recent accounts of models.
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models whose core is a material or physical object, and some of these models

stand in representational relations to specific target systems. This is the sort of

situation that I am focused on here: the models that I discuss are physical

objects, and they are targeted at the phenomenon of landslide generated im-

pulse waves. The second point of agreement is that the physical object does

not bear any intrinsic relation to its target system. For a model to stand in a

representational relation to its intended target (assuming it has one), agents

must add the elements that constitute this representational relation. I will say

that these elements constitute the interpretation of the model: when the phys-

ical object is supplemented with an interpretation, the result is a model that

represents its target in a certain way. In what follows, I will suppose that the

way that a model represents its target to be can be captured by a collection of

propositions. My discussion will tend to follow Weisberg’s approach of sup-

posing that the propositions take the form of ‘model feature X is present in the

target’. However, I also draw on the translation key that is emphasized by

Frigg and Nguyen. This is because the model features that are connected to

the target features are different from one another in a systematic way. For

example, the lengths of objects found in the model have corresponding lengths

in the target that will be many times larger. There is no reason to suppose that

Weisberg could not extend his feature-matching account to handle these sorts

of interpretations as all that would be required would be a ‘key’ that would

indicate how salient features of the model are supposed to be reflected in a

‘similar’ target.5

Once a model stands in a representational relation to an intended target it

makes sense to ask to what extent it misrepresents that target. I will say that an

idealization of a model is a special kind of false statement about the target that

is generated by the features of the model and the representational relation that

it stands in to that target. For such a false statement to count as an idealiza-

tion, the agents using the model must believe that the statement is false. If the

agents lack this belief, then we just have a model misrepresenting its target in a

certain way, but not an idealization of the model. Suppose, for example, that

an interpreted model generates a feature-matching claim of the sort ‘model

feature X is present in the target’, but that in fact the feature is absent in the

target. If the agents believe that X is not present in the target, then the state-

ment that model feature X is present in the target is an idealization of the

model.6

5 My discussion in this paper is meant to address a worry about cases where concrete models are

directed at specific target phenomena. Nothing I say here is meant to endorse any broader

account of how models represent or the nature of models more generally.
6 Cf. (Thomson-Jones [2005]). Thomson-Jones does not impose this belief requirement, and so in

this sense his notion of idealization is much broader. However, he also emphasizes the import-

ance of the misrepresentation pertaining to the relevant features of the target, which potentially

restricts what counts as an idealization.
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Some of the idealizations of a model will be found in the explicit statements

that are used to interpret the model, but others will be merely implicit. For

both an exemplification/translation approach and a feature-matching ap-

proach, an interpretation of a model will not simply enumerate all the ways

that the model represents the target to be. Instead, some basic elements of the

interpretation will be made explicit, with the provision that the full interpret-

ation follows from these elements, along with some perhaps unknown features

of the model. This is especially clear with a small-scale concrete model whose

target is a much larger concrete system. A spatial scale will indicate how

lengths in the model are to be associated with lengths in the target, but the

lengths of all the objects in the model may not be known in advance. The

purported length of some object in the target will then be discovered once a

modeller combines this spatial scale with a measurement of a part of the

model. Investigating a model that stands in a representational relation to a

target can thus help to flesh out how the model is representing the target to be.

In the course of these investigations, a modeller may come to realize a new

respect in which the model is idealized.

In this article, I stipulate a special sense in which a model is essentially

idealized. In this sense, a model is essentially idealized when any model of

that type with that purpose has an idealization of some kind. That is, the

modellers aim to model some target system in some way for some purpose,

and there is no known way to do that without using a model with that kind of

idealization. By contrast, a model is not essentially idealized when each ideal-

ization of the model can be avoided in a way that preserves the intended

modelling purpose. When a model is essentially idealized, it is not clear how

to use the claims that the model makes about the target to explain features of

the target. For we believe that some of these claims are false, and we suppose

that false claims are not apt to explain. My proposed solution to this problem

is to say that scientists selectively endorse the claims that the model makes

about the target. That is, they assemble evidence that some of the claims that

the model makes about the target are true even though other claims that the

model makes about the target are false. If this evidence is adequate, then

modellers can explain some features of their target phenomenon using essen-

tially idealized models. The model, even though it is essentially idealized, will

represent the causes operating in the target to be a certain way, and in this

respect the model will be an accurate representation.

3 Giant Waves in Lituya Bay, Alaska

While water waves or ‘tsunamis’ generated by earthquakes are well known,

there is a rarer category of water waves caused by solid materials rapidly

entering some body of water via a landslide. The most discussed and
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spectacular instance of such landslide generated impulse waves occurred on 9

July, 1958 in Lituya Bay, Alaska (see Figure 1).7 Eyewitnesses reported a

massive wave that originated at the head of the bay, rapidly running through

the length of the bay and out into the ocean. The wave was so powerful that it

scoured the sides of the bay, removing trees and soil. Subsequent investigation

showed that this wave run-up reached the extraordinary height of 524 m in one

localized region of the bay in Gilbert Inlet. This remains the largest wave run-

up ever recorded (Fritz et al. [2009]).

As its name suggests, the phenomenon of landslide generated impulse waves

is identified partly in terms of the primary cause of the wave: an event only

counts as an instance of this phenomenon when the wave is generated by a

landslide. The primary source of the difficulty in understanding these waves is

the complex interactions between the landslide material, the water and the

ambient air. As the landslide material enters the water, its impact is affected by

the buoyancy of the water. The extent of the impact is also controlled by the

depth of the body of water. As energy is transferred from the landslide to the

water, an air cavity is generated that results in a thorough mixing of water and

air. This ‘air bubble entrainment’ changes the character of the resulting water

waves, and greatly complicates any direct treatment of the wave evolution.8

On the one hand, the power of the wave is clearly due to the massive amount

of energy injected into the body of water by a massive landslide. On the other

hand, the mixing of solid, liquid and gas in this process blocks any simple

theoretical treatment.

One research strategy to deal with these complexities involves the construc-

tion of and experimentation on small-scale concrete models of such landslide

generated impulse waves. My discussion here considers the investigations that

were initially conducted at ETH Zurich by a group that includes W. Hager, H.

Minor, A. Zweifel, H. Fritz, and V. Heller, with special emphasis on (Fritz

et al. [2001]).9 The abstract of this paper summarizes the conclusion of their

investigations using a concrete model: ‘The laboratory experiments confirm

that the 1958 trimline of forest destruction on Lituya Bay shores was carved

by a giant rockslide generated impulse wave. The measured wave run-up per-

fectly matches the trimline of forest destruction on the spur ridge at Gilbert

Inlet’ (Fritz et al. [2001], p. 3). I interpret the second sentence to provide part

of the evidence for the first sentence: a conclusion is drawn about the instance

of the phenomenon based, in part, on the capacity for the concrete model to

7 For a more recent instance, see (Schiermeier [2017]).
8 Some of the challenges in handling such cases are surveyed in (Chanson [2009]).
9 See also (Fritz et al. [2004]; Heller et al. [2008]; Fritz et al. [2009]; Heller and Hager [2010]; Heller

[2011]). Space considerations preclude any discussion of the more recent investigation of

three-dimensional concrete models in (McFall and Fritz [2016]; McFall et al. [2018]). It is im-

portant to emphasize that additional tools, such as computer simulations, are an important part

of this broader research program.
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reproduce a feature of that phenomenon. But obviously the ‘match’ here be-

tween the model and the target holds only when the model is appropriately

interpreted. Some background is needed to appreciate how this interpretation

works.

Two theories are deployed to motivate the construction and interpretation

of the model: fluid mechanics and dimensional analysis. The theory of dimen-

sional analysis plays a significant role in justifying the conclusions that these

practitioners extract from their modelling activity. To appreciate this role, one

should be aware of the central result of the theory, Buckingham’s theorem (or

the pi-theorem). Consider any equation y ¼ f ðx1; . . . ;xnÞ that relates variables

x1; . . . ; xn to y via some function f. For this equation to represent a relation-

ship between some quantities that obtains in some phenomenon, each variable

must be related to an intended quantity via a system of units. For example, to

represent the period of a pendulum, the variable T may be assigned the units of

time of seconds. Once the equation is interpreted, it may be correct, and if it is

correct, it may or may not be ‘dimensionally homogeneous’. A dimensionally

homogeneous equation is an equation that remains correct when variables

x1; . . . ; xn; y in a given system of units are transformed into a different

system of units, resulting in variables x01; . . . ; x0n; y0. To continue our example,

Figure 1. Lituya Bay with wave heights in metres.
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consider the equation for the period of a simple pendulum, T ¼ 2�
ffiffiffiffiffiffiffiffi
L=g
p

.

Suppose the variable for period T is assigned the units of seconds, the variable

for length L is assigned the units feet, and the variable for gravitational ac-

celeration g is assigned the units feet per second per second. If the equation is

dimensionally homogeneous, T ¼ 2�
ffiffiffiffiffiffiffiffi
L=g
p

will continue to hold even if we

shift to a different system of units, such as seconds and metres. Some equa-

tions clearly are not dimensionally homogeneous. For example, T ¼ 1:11
ffiffiffiffi
L
p

follows from our first equation if g¼ 32.2 feet per second per second. But this

equation will fail if we transform our units of length from feet to metres.10

If equation y ¼ f ðx1; . . . ;xnÞ is dimensionally homogeneous, then there is a

so-called reduced equation that pertains to the very same phenomenon, but

that relates dimensionless products of variables instead of dimensioned vari-

ables. To comprehend this contrast, it is essential to pin down what it means

for a variable to have a dimension. When a variable in an equation is related to

a physical quantity, it must be related via a system of units such as seconds and

feet in the pendulum equation. More specifically, period T is assigned a unit of

time, seconds, while length L is assigned a unit of distance, feet. When we

transform our equation from one system of units to another system of units,

the kind of unit that is appropriate for each variable remains the same. For

example, length L is first assigned to feet, and then assigned to metres. The

‘dimension’ of a variable is a means of indicating how the numerical value of a

variable in one system of units should be changed when shifting to another

system of units.11 If x is a variable, then ½x� is the dimension of that variable. A

system of units comes with a set of fundamental units which permit the de-

termination of the units of all variables. In our case, the fundamental units are

feet and seconds, which together determine the units of acceleration as feet per

second per second. This induces an algebraic structure on dimensions them-

selves which will be preserved across various systems of units: dimension ½L� of

L and ½T � of T yield dimension ½L=T2� for g, an acceleration. In addition, we

can use the dimensioned variables to arrive at the dimensions of products of

variables, such as T=
ffiffiffiffiffiffiffiffi
L=g
p

. The dimension of product T=
ffiffiffiffiffiffiffiffi
L=g
p

is

½T �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L�=½L=T2�

p
¼ ½1�. Whenever such a product is assigned the dimension

[1] through this sort of algebraic calculation, we say the product is

dimensionless.

If equation y ¼ f ðx1; . . . ; xnÞ is dimensionally homogeneous, then there

is a reduced equation, � ¼ F ð�1; . . . ;�pÞ, where �;�1; . . . ;�p are

10 This illustration and much of my exposition follows (Langhaar [1951]). This textbook draws

extensively on Buckingham’s ([1914]) classic paper, but also embeds the discussion in a more

purely algebraic setting. I follow Langhaar in treating equations as relations between variables

which are in turn tied to physical quantities via a system of units.
11 Some practitioners, such as Langhaar ([1951], Section 3), suppose that a dimension is nothing

but this. For a more realistic attitude towards dimensions, see (Skow [2017]). I do not think this

issue needs to be addressed to handle the case I develop in this paper.
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dimensionless products of the original variables, y; x1; . . . ; xn. In addition,

p ¼ n� r, where r is the number of fundamental units in the system of

units.12 When n¼ r, the reduced equation will take the form of � ¼ k,

where k is some constant. This is what happens with the simple pendulum

case: a reduced equation is obtained from T ¼ 2�
ffiffiffiffiffiffiffiffi
L=g
p

by dividing both sides

by
ffiffiffiffiffiffiffiffi
L=g
p

, yielding T=
ffiffiffiffiffiffiffiffi
L=g
p

¼ 2�. As product T=
ffiffiffiffiffiffiffiffi
L=g
p

is dimensionless, the

reduced equation holds for any system of units. This sort of simplicity is not

necessary for dimensional analysis to be useful. In our landslide case, Fritz et

al. begin by supposing that there is some dimensionally homogeneous equa-

tion that applies to landslide generated impulse waves. The character of this

equation is not known, but the theory of fluid mechanics and past experience

provide good evidence for the variables that it will relate. Assuming that the

variables can be identified, Fritz et al. can use Buckingham’s theorem to arrive

at a list of p dimensionless products. To see how this works, we start with a

system of units with three fundamental units whose dimensions are length [L],

mass [M], and time [T]. Starting with 11 variables, Buckingham’s theorem

ensures that 11� 3 ¼ 8 dimensionless products of these variables are sufficient

for their target phenomenon (Heller [2011], pp. 298–9). As the reduced equa-

tion is adequate for this target phenomenon, it follows that agreement be-

tween the model and target on these 8 dimensionless products is sufficient for

the model and target to agree in all other relevant respects. In particular, the

causes found to be operating in the model will also be found to be operating in

the target.

Some of these dimensionless products are quite intuitive. For example, for any

distance x, there is a dimensionless ‘relative distance’ that results from dividing x

by the depth of the bay h. Fritz et al. elected to build their concrete model at a

spatial scale of 1: 675 (l ¼ 675). The measured depth of the bay is h¼ 122 m

while the measured width of the bay is 1342 m. The model depth was thus set at

122=675 ¼ 0:18 m, and the model width was set to 1342=675 ¼ 1:99 m. The

choice of h is of course not mandated a priori: any length variable with dimension

[L] could be used to generate a family of relative distances. In this case, modellers

used h to arrive at relative distances, but they could have used the width instead.

The basis for choosing h is that modellers believe that the depth, h, is the most

significant spatial variable. It figures into a variety of causal processes that de-

termine the characteristics of the impulse wave. This importance is made clear by

some of the other dimensionless products that are identified by a dimensional

analysis of the phenomenon.

12 For some clarification of r, see (Langhaar [1951], Chapter 3).
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The most important dimensionless product for this phenomenon is called

the Froude number, F:

F ¼
Vs

ðghÞ1=2
: ð1Þ

This is the ratio between landslide velocity Vs and the square root of the prod-

uct of the gravitational acceleration, g, and the depth, h. The numerator has

dimension ½L�=½T �, while the denominator has dimension ð½L�=½T �2 � ½L�Þ1=2,

which simplifies to ½L�=½T �. The Froude number is thus a dimensionless prod-

uct that can be used to characterize some important features of a landslide

generated impulse wave. It can be conceived as a ratio between two of the

forces that are at work in the phenomenon (Heller [2011], p. 295). The nu-

merator, Vs, reflects the strength of the momentum carried by the landslide as

it enters the water, while the denominator, ðghÞ1=2, indicates the effects of the

gravitational forces that further accelerate the landslide as it falls through the

water to the bottom of the bay. Estimated slide velocity Vs for the Lituya Bay

landslide is 110 m/s, while gravitational acceleration is 9.8 m/s2. This sets the

Froude number for the landslide at 110 m=s

ð9:8 m=s2�122 mÞ1=2
¼ 3:18. The trials conducted

with the concrete model aimed to match this Froude number by carefully

setting the model slide velocity. To obtain a Froude number of 3.18 with a

1: 675 scale model, the model slide velocity must satisfy:

z m=s

ð9:8 m=s2 �
122

675
mÞ1=2

¼
110 m=s

ð9:8 m=s2 � 122 mÞ1=2

z m=s ¼ 110 m=s �
1
ffiffiffiffiffiffiffiffi
675
p

z m=s ¼ 4:22 m=s:

The model slide velocity was thus set to 4:22 m=s. When a model and target

agree on their Froude numbers, the two are said to be Froude similar.

When modellers say that a model and target are Froude similar, there is a

corresponding interpretation of the model that allows one to take claims

about the model and translate them into corresponding claims about the

target. This makes it possible to evaluate the claim that the model run-up

‘perfectly matches’ what happened in the target. For a spatial variable like

the run-up, this means that the model variable is 1=� ¼ 1=675 times the target

variable. That is, the concrete model showed a run-up of 526/675 m or 0.77 m.

But times are interpreted differently. We saw how the requirement of Froude

similarity mandated that model slide velocity Vs be set at 1=
ffiffiffiffiffiffiffiffi
675
p

times target

slide velocity Vs. More generally, this is how all model velocities are inter-

preted as generating claims about target velocities. For this interpretation of

model lengths and model velocities to be coherent, model times must be
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interpreted as 1=
ffiffiffiffiffiffiffiffi
675
p

target times. This ensures that the claims about velo-

cities in the target that are based on the model will agree with the claims about

distances and times, as velocities just are ratios of distances and times. For

example, if an element of the model moves 1 m in 1 s, for a model velocity of

1 m/s, this generates the claim that the corresponding element of the target

moves 675 m in
ffiffiffiffiffiffiffiffi
675
p

¼ 26 s, for a target velocity of 26 m/s. These aspects of

the interpretation of the model are needed to determine, for example, how the

velocity of a wave in the model is to be related to the velocity of a wave in the

target.

Now that the model is fully interpreted, it makes sense to wonder to what

extent the model is idealized and if the model is essentially idealized. The

model’s interpretation involves two significant idealizations. As this sort of

idealization is present in any alternative way of modelling the bay for these

purposes, I conclude that the model is essentially idealized. Both idealizations

are associated with so-called scale effects. Scale effects arise when a small-scale

concrete model must be dissimilar to its intended target in ways that are

known to be causally relevant to the phenomenon in question. In the Lituya

Bay case, we have focused on the Froude number and the aim of having a

match in the Froude numbers of the model and target. However, there are two

other dimensionless products that are known to be important for water waves.

These are the Reynolds number and the Weber number. The Reynolds

number involves the kinematic viscosity of water, �, while the Weber

number involves the density of water, �, and the surface tension of water, �:

R ¼
g1=2h3=2

�
; ð2Þ

W ¼
�gh2

�
: ð3Þ

Just as the Froude number can be conceived as reflecting a ratio between two

forces, the Reynolds and Weber numbers relate other forces at work in water

waves (Heller [2011], p. 295). The Reynolds number reflects the relative im-

portance of the inertial forces and the viscosity of the water: at low Reynolds

numbers, fluid flows can be divided into regular layers, while at high Reynolds

numbers turbulent flows arise where fluid layers mix and eddies are generated.

The Weber number reflects the comparative strengths of inertial forces and the

surface tension of water: the larger the Weber number, the less a wave’s be-

haviour is affected by this surface tension.

The scale effect tied up with the Froude, Reynolds, and Weber numbers is

that a small scale concrete model that is Froude similar to its target must be

quite dissimilar with respect to both the Reynolds and Weber numbers. To see

why, note that the ratio between the actual depth, h, and the model depth is
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given by the spatial scale of the model, in our case 675. The remaining vari-

ables g, �, �, and � are fixed by the character of water (for �, �, and �) or the

laboratory environment (for g). It follows that if the target depth is 675 times

the model depth, then the target Reynolds number is ð675Þ3=2&17500 times

greater than the model Reynolds number. Similarly, the target Weber number

is ð675Þ2&455;000 times greater than the model Weber number. This is a

significant mismatch in a causally relevant feature of water wave dynamics,

and there is every reason to suspect that the dissimilarity in Reynolds and

Weber numbers is distorting the claims about the target that are made on the

basis of what is found in the model. The claims that the model makes about

the target phenomenon are generated using the features of the model and the

interpretation of those features based on Froude similarity. But Froude simi-

larity precludes a match in Reynolds and Weber numbers. This is an unavoid-

able consequence of the materials used and the choice to interpret the model in

this way. I conclude that the model is essentially idealized: there is no known

way to develop a concrete model that aims to model the causes of this wave

without having that model generate some known falsehoods about its in-

tended target.

4 Mitigating Scale Effects

One way to use an essentially idealized concrete model to come to know a

causal explanation is to note that scale effects are themselves a phenomenon

that can be studied and understood. Through this sort of reflective investiga-

tion, modellers can assemble evidence that they have minimized the problem-

atic aspects of scale effects, even if they cannot be entirely eliminated. Here I

will summarize Heller’s ([2011]) discussion of this ‘avoidance’ strategy for this

case in his insightful ‘Scale Effects in Physical Hydraulic Engineering

Models’.13 The avoidance strategy involves a seemingly paradoxical result:

while the variables that define the Reynolds number are causally relevant to

the behaviour of water waves, in this case the differences between the model

and target ‘makes no difference’ to the aspect of the phenomenon in question.

In Section 5 I will analyse this situation using Woodward’s notion of condi-

tional causal irrelevance. The variables that define the Reynolds number, R,

are conditionally causally irrelevant to certain features of the wave in specifi-

able circumstances, even though those variables are causally relevant to those

very features.

Heller’s avoidance strategy involves building a concrete model so that the

scale effects will be unimportant for the target phenomenon. We can consider

13 Heller also discusses compensation and correction strategies, but I will not pursue these here for

reasons of space; see also (Sterrett [2017a]) for a richer investigation of a wider range of cases.
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a range of size scales, l. The larger l is, the smaller the concrete model will be

when compared to the target. This presumably makes the model easier to

build and investigate. But if the model is too small, then scale effects will

spoil the claims about the target that are extracted from the model. In Fritz

et al.’s case, the modellers chose l ¼ 675. The worry is that they may have

made their model too small. Heller notes that modellers have developed ‘rules

of thumb’ for how large l can be, consistent with the reasonably accurate

modelling of some type of target phenomenon. However, Heller ([2011],

p. 299) also helpfully points out that these rules of thumb must be tied to

the specific aims of the modeller: ‘These guidelines may be misleading if, for

example, just a limiting scale factor l or water depth h on its own is applied

without considering to which prototype features [target features] they were

defined’. Heller illustrates this point using the landslide generated impulse

waves. Consider two small scale concrete models of such waves where the

depths are 0.4 m and 0.2 m. We can conceive of the smaller concrete model

as a model of the larger concrete model. Then l ¼ 2, so we would expect only

negligible scale effects. But when we compare the character of the two waves

immediately after the landslide enters the water, significant differences emerge.

There are significant scale effects that spoil the model with respect to the extent

of air entrainment at the time the landslide enters the water. Remarkably,

though, this failure is consistent with scale effects not being significant for

the purposes of modelling other features of the wave. Here I will focus on the

maximum amplitude achieved by the primary wave AM, the primary wave

velocity, and the run-up height of this primary wave, Y.

The key assumption needed to link acceptable spatial scales to features of

interest is that these features arise in regular and predictable ways for extended

ranges of dimensionless products. To show that this is the case for AM and Y,

Heller and his collaborators experimented with a ‘scale series’ of concrete

models of landslide generated impulse waves in order to determine how vari-

ous features of interest arise once certain thresholds are reached. Going from a

depth of 0.4 m to 0.2 m and then 0.1 m can induce significant scale effects. If we

again think of the smaller models as models of the larger models, then l ranges

from 2 to 4. But these scale effects fail to induce a mismatch for AM and Y.

Heller ([2011], p. 299) summarizes these experimental researches by claiming

that ‘scale effects are negligibly small (< 2%) relative to the maximum wave

amplitude aM, if RI ¼ g1=2h3=2=� � 300;000 and WI ¼ �gh2=� � 5000 result-

ing in the rule of thumb h � 0:200 m for typical laboratory conditions’. That

is, when the Reynolds number and the Weber number in the model exceed

some thresholds, the predictions generated by the model (under the interpret-

ation tied to Froude similarity) for primary wave amplitude AM will closely

match what will be found in the target phenomenon. Crucially, these thresh-

olds are not a simple function of l. As we have seen, the Reynolds number and
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the Weber number take account of other features, such as the viscosity and

surface tension of water. Table 1 summarizes the Reynolds and Weber num-

bers for Heller et al.’s scale series S4/1, S4/2, and S4/3: When h is decreased

from 0.4 m to 0.2 m, the Reynolds number also decreases, from around

800,000, to around 300,000. The additional decrease from 0.2 m to 0.1 m

takes the Reynolds number from around 300,000 to around 100,000. If the

primary wave behaviour is essentially unchanged once we have passed a

Reynolds number of 300,000, then there is every reason to trust a concrete

model once its depth has exceeded 0.2 m. A similar pattern emerges for the

Weber numbers, where 0.1 m, 0.2 m, and 0.4 m correspond to Weber numbers

of around 1300, 5300, and 21,300, respectively. Again, once the threshold of

5000 is reached, we may have a reliable way to generate reasonably accurate

claims about the primary wave using observations of the concrete model.

The data arrived at through experiments with these three concrete models is

summarized in Figure 2 (Heller et al. [2008], p. 698). Heller et al. are able to

establish a very close match between the primary waves in S4/1 (h ¼ 0.4 m)

and S4/2 (h ¼ 0.2 m), indicating that scale effects are relatively insignificant

for AM. By contrast, the gaps between S4/1 and S4/3 (h ¼ 0.1 m) remain

relatively large, indicating the presence of important scale effects. The

upshot of this analysis is that Froude similar models of landslide generated

impulse waves can be used when the depth is h ¼ 0.2 m or greater. But these

models should only be targeted at AM, the velocity of the primary wave, and

consequent primary wave run up Y. Nothing in this analysis licenses the use of

these models to understand the immediate effects of the landslide impact. As

we have seen, even when � ¼ 2 there are significant scale effects that under-

mine any extrapolation from the model’s behaviour right after the landslide

enters the water.14

Experimental investigation of the concrete models in a scale series can show

that, even though the models are idealized in important ways, they are still

reliable guides to certain features of the targets, even when those features are

Table 1. Reynolds and Weber numbers. Adapted from (Heller et al. [2008], p.

698)

S4 h R W

S4/1 0.4 m 836,495 21,382

S4/2 0.2 m 313,103 5345

S4/3 0.1 m 109,414 1336

14 It is important to note that the data summarized in Fig. 2 are not the raw data, but the data after

it has been analysed; see (Heller et al. [2008], p. 698). One could question the details of this

analysis, but I do not have the space to address those concerns here.
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caused by elements that are idealized according to the interpreted model. In our

case, the Reynolds and Weber numbers of the model fail to match the target, and

this failure is tied to a causally relevant difference between the physical processes

responsible for the waves in the model and target. Nevertheless, the mismatch

can be estimated and argued to be unimportant for predicting the amplitude and

velocity of the primary wave. This is because we can take care to exceed certain

thresholds that are controlled by the depth of the water. In this analysis, the

reliable threshold of 0.2 m is actually slightly larger than Fritz et al.’s choice of

0.18 m. This suggests that future work on this phenomenon should always use

depths that exceed 0.2 m. Other phenomena might mandate even more demand-

ing restrictions, corresponding to l less than 100 or even less than 5. It all

depends on the character of the relevant dimensionless products and how they

relate to the features of the phenomenon that are of interest.

5 Accuracy for the Purposes of Causal Explanation

In an influential book and a number of papers Woodward has advanced an

interventionist account of causation.15 This framework applies very well to the

case of concrete models and can be used to clarify how essentially idealized

Figure 2. Scale series data (Heller et al. [2008], p. 698).

15 See especially (Woodward [2003]; [2013]; [2016]).
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concrete models can extend our knowledge of phenomena. For Woodward,

causation is a relation between variables, and causal facts obtain only relative

to a set of variables. The metaphysical status of these variables is left open, but

the basic idea is readily adaptable to our landslide case. We have treated a

variable with a unit as a means of referring to a physical quantity. A variable

can thus be treated as a family of incompatible values, where each value stands

for a specific physical quantity. For example, depth h (in metres) is a variable

whose values range from 0.4 m to 122 m. On an interventionist analysis, to say

that the depth of Lituya Bay is a cause of the wave run-up of 524 m is to make

a certain type of counterfactual claim. First, we select a set of variables, and set

their values using the features of Lituya Bay on the day the wave occurred.

The causal claim is true just in case there is some intervention on the depth of

Lituya Bay that would result in a change in wave run-up. An intervention here

is a special sort of manipulation of the depth of the bay which succeeds in

changing the depth while holding all other potential causes of the wave run-up

at their actual values. There is no requirement that this intervention be prac-

tically feasible. Woodward repeatedly emphasizes our ability to assemble in-

direct evidence concerning the outcomes of these interventions, such as

through randomized controlled studies.

Landslide generated impulse waves are of course a case where interventions

are not practically feasible and it may not be immediately clear how we can

assemble evidence for interventions in such cases. Woodward ([2003], p. 125)

has not said much about concrete models, but one promising strategy is men-

tioned in passing in an early criticism of agency views of causation: ‘when we

ask what it is for a model or simulation that contains manipulable causes to

“resemble” phenomena involving unmanipulable causes, the relevant notion

of resemblance seems to require that the same causal processes are operative in

both’. This is the view that I am arguing for in this paper: even when a concrete

model is essentially idealized, scientists can assemble evidence that the causal

generalizations that apply to the model are also applicable to the target.

I claim that the evidence for these conclusions is assembled in two stages, in

line with the indirect strategy of model-based science. First, practitioners es-

tablish causal claims about the concrete models themselves. Then they extend

some of these causal claims to their target phenomenon, and draw conclusions

about the results of impractical interventions on these targets. In both stages,

the variables that mark the beginning of dimensional analysis are the potential

causes of the features of interest. But as we have seen, there is an intermediate

stage where practitioners deploy another family of dimensionless products of

these variables. As I have reconstructed this process, the dimensionless prod-

ucts are primarily tools for translating the results found in the model to claims

about the target. In addition, the dimensionless products can be used to assess

the reliability of these extrapolations.
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In our wave case, the effects of interest are the maximum amplitude

achieved by primary wave AM, as well as wave run-up Y. The potential

causes that are included in the concrete model are the density, height,

length, and impact velocity of the slide, as well as the depth of the bay and

the density of the water. Other potential causes that are considered are the

kinematic viscosity, �, and surface tension of the water, �. The focus on the

Froude number involves the assumption that the variables that determine it

are very significant. So the hope is that the slide velocity, depth and gravita-

tional acceleration are each causes of the maximum amplitude and wave run-

up. Experimentation with the concrete model can show how changes in each

of the slide velocity and depth result in changes in the maximum amplitude

and wave run-up. While gravitational acceleration can not be directly manipu-

lated in this context, scientists have background theoretical motivations for

concluding that this variable is also a genuine cause of the features of interest.

The most interesting step concerns how and when the causal patterns found

to hold in the concrete model should be extended to the target phenomenon.

Ignoring scale effects, the extrapolation is unproblematic: when the model is

set so that its Froude number and other dimensionless products agree with the

actual conditions in Lituya Bay, there is good reason to conclude that the

actual causes in the model will correspond to the actual causes in Lituya Bay.

For example, a cause of the observed model run-up of 0.77 m is the model

depth of 0.18 m. That is, were the depth to have been different as a result of an

intervention, then the model run-up would have been different. This causal

claim about the model is directly translated to the target: a cause of the

observed target run-up of 524 m is the Lituya Bay depth of 122 m. If the

bay’s depth had been changed through an intervention, then the wave run-

up would have been different.

How can this sort of causal extrapolation be justified once we acknowledge

the prevalence of scale effects? I will defend a strategy that I call selective

endorsement. Using an interpretation of the concrete model, a wide range

of claims are generated about the target system, including claims about the

causes of various features of the target. Given her awareness of the mismatch

between the model and target associated with various idealizations, a practi-

tioner must indicate which generated claims about the target she wishes to

endorse. In our wave case, the endorsement is clarified through an experimen-

tal investigation of scale effects and the conclusion that certain mismatches

make no difference to the aspect of the target of interest. The practitioner is

thus rational to endorse a causal explanation of the aspects of interest, while

refraining from endorsing the claims about the target that are compromised

by the idealization.

Recall that the experimental investigations of the scale series of concrete

models showed that the concrete model involved scale effects that undermined
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its reliability for the period immediately after the landslide entered the body of

water. However, these same investigations indicated that the scale effects are

not important for the maximum wave amplitude or the consequent wave run-

up. This is because the Reynolds number, R, and the Weber number, W, in the

concrete model exceeded certain thresholds, even though those numbers were

much smaller in the model than they were in the target. How do these experi-

mental investigations license a selective endorsement of the causal claims

generated by the model?

It is here that we can deploy Woodward’s notion of conditional causal

irrelevance. Woodward develops this notion as part of a debate about the

relationship between a set of macro-variables, Xi, and a set of micro-

variables, Yk. In certain situations, a causal explanation of effect variable E

in terms of Xi is just as good as a causal explanation in terms of Yk. This is

because all interventionist information concerning the salient values of E is

condensed in the macro-variables. In this sense, once we deploy the macro-

variables, there is no additional causal information to be obtained from also

considering the micro-variables: ‘A set of variables Yk is irrelevant to variable

E conditional on additional variables Xi if the Xi are unconditionally relevant

to E, the Yk are unconditionally relevant to E, and conditional on the values of

Xi, changes in the value of Yk produced by interventions and consistent with

these values for Xi are (unconditionally) irrelevant to E’ (Woodward [forth-

coming], pp. 17–18). I will extend this notion to cases where there is a tighter

relationship between the variables than what we have in a micro versus macro

case.16 In this extended sense, a set of variables, Yk, is irrelevant to variable E

conditional on additional variables Xi each exceeding some specified thresh-

old. For our example, the Yk variables are the dimensioned variables � and �.

We have reason to believe that their causal relationships are not correctly

tracked when we translate the features of the model to the target. The add-

itional variables Xi are the dimensionless products R and W that are defined

partly in terms of � and �. Finally, the effect variables here are AM and Y.

When R and W exceed certain thresholds, the mismatch between model and

target with respect to the causal consequences of � and � can be discounted as

their actual values are conditionally causally irrelevant to AM and Y. That is, if

we keep R and W above the requisite thresholds, manipulations on � and � will

fail to change AM and Y.

To see how this works, consider a causal explanation of AM ¼ 152 m and

Y¼ 524 m that occurred in Lituya Bay. The dimensioned variables Vs, h, and g

that enter into the Froude number are deemed causes of both of these values.

Should we also say that the other dimensioned variables that enter into R and

W, namely, � and �, are also causes of these effect values? On the one hand,

16 Cf. (Woodward [2015], Section 6).
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they are unconditionally causally relevant as there are interventions on � and �

that change the maximum wave amplitude and the wave run-up. On the other

hand, they are conditionally causally irrelevant once we have specified a

regime where R � 300;000, and W � 5000.

With these distinctions in place, it should be clear how a selective endorse-

ment strategy can be implemented. Based on an experimental investigation of

the concrete model, a scientist may conclude that some dimensioned variables

are conditionally causally irrelevant to the aspects of the phenomenon of

interest. Both in the model and in the target, the values of � and � make no

difference to the maximum wave amplitude and the wave run-up once R and

W exceed their thresholds. The dimensioned variables that are conditionally

causally relevant to these outcomes are all the remaining variables, including

the slide velocity and slide dimensions, as well as h and g. This motivates a

scientist to refrain from endorsing a claim about the target generated by the

model whenever it is implicated in an idealization. But the scientist can be

assured that these divergences between model and target will not undermine

some other model-based extrapolations. This is because the claims that they

have refused to endorse have been shown to involve variables that are condi-

tionally causally irrelevant. These claims generated by the model are not re-

liable indicators of the features of the target, but this unreliability does not

undermine the model’s indications about the causes of the wave amplitude and

run-up. We can use a fully interpreted concrete model to explain and control

features of this phenomenon. Scientists selectively endorse the claims that the

model makes about the target, under this interpretation, using the experimen-

tally generated evidence that the claims that they endorse are reliable, even if

many other claims generated by the model are not reliable.

The selective endorsement strategy is different from what could be called the

selective interpretation strategy. The latter idea is that a modeller should limit

their interpretation of their model so that the claims that the interpreted model

makes about the target avoid any known falsehoods. I would concede that

some idealizations warrant selective interpretation, and have examined some

cases of this sort elsewhere.17 For example, when a variable in a mathematical

model is set to infinity, it is natural to suppose that the modeller intends to

decouple that variable from any physical interpretation. But I do not think the

selective interpretation strategy can work when we consider essentially idea-

lized concrete models and the modelling purpose of arriving at causal explan-

ations. For our model to generate claims that are able to explain the primary

wave run-up in Lituya Bay, we need the model to generate claims about the

primary wave’s amplitude and velocity over an extended period of time, lead-

ing up to the time of the run-up. In interpreting the model in terms of Froude

17 See (Pincock [2014]). An important recent discussion of this strategy is (Nguyen [forthcoming]).
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similarity, modellers advance a full interpretation of the model’s features,

including all lengths, times and velocities. But this requires that the model

generates claims about the target that are believed to be false due to the dis-

torted model values for the Reynolds number and Weber number. If we try to

calibrate or limit our interpretation to avoid these claims, then we will arrive at

a heavily censored interpretation that avoids any claims about the dynamic

evolution of the primary wave. That is, we will have a purely predictive model

that ‘black-boxes’ the dynamics of the wave’s development. This sort of in-

terpretation does not generate claims about the target that are apt to explain

why the primary wave run-up was 524 m. I conclude, then, that in some cases a

selective endorsement approach is needed to make sense of how model-based

science can afford knowledge of causal explanations.

6 Potential Alternatives

6.1 Robustness analysis

One widespread strategy for dealing with essentially idealized models is known

as robustness analysis. A familiar example from recent philosophy of science is

a robustness analysis of the Lotka–Volterra model of predator–prey inter-

actions (Weisberg and Reisman [2008]; Weisberg [2013]). We can consider a

case where the model is directed at a specific type of predator–prey system,

such as the fish in the Adriatic Sea over some period of time. The numbers of

various predator and prey are causally affected by any number of factors, and

most of these factors are not present in the model. Nevertheless, the model is

used to license an explanation of some changes in the numbers of predator and

prey. Weisberg and Reisman ([2008], p. 114), in particular, have emphasized

the explanatory power of the so-called Volterra principle: ‘Ceteris paribus, if a

two-species, predator–prey system is negatively coupled, then a general bio-

cide will increase the abundance of the prey and decrease the abundance of the

predators’. This principle is one of the claims about the target that is generated

by the features of the model and its representational relationship to a target.

How, though, can this license the use of this explanatory principle, given that

the model is highly idealized?

One proposed way to answer this question is to deploy robustness analysis.

Schematically, a robustness analysis starts with a model that gives rise to a

principle about a target. The analysis consists in varying certain features of the

model in a systematic way, and then checking to see if the same principle is

consistently generated. Perhaps the simplest sort of robustness analysis varies

the parameters of the model. In the Lotka–Volterra model, the parameters

include r, the growth rate of the prey population, and a, which determines

what proportion of prey are consumed by the predators. A parameter
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robustness analysis would vary the parameters of the model and see if the

elements required to derive the Volterra principle remain in place. If so, then

the model robustly generates that principle. A more demanding sort of ro-

bustness analysis is ‘structural’ in the sense that it changes a mathematical

element of the original model with a new mathematical relationship. For ex-

ample, Weisberg and Reisman consider the result of replacing the term rV

with a more complex term, rð1� V=KÞV , that under the intended interpret-

ation, varies the causal content of the model. Again, the original model is

robust under this sort of structural change when the elements needed to gen-

erate the Volterra principle remain in place (Weisberg and Reisman [2008],

Section 4). An even more demanding form of ‘representational’ robustness

analysis would alter the character of the mathematical model even more dra-

matically. Weisberg and Reisman ([2008], Section 5) develop an agent-based

model of predator–prey interactions that uses a completely different mathem-

atical framework than the original model, and check to see if an analogue of

the Volterra principle results from this new type of model.

Weisberg and Reisman ([2008], p. 129) conclude their survey of robustness

analysis with this summary:

[. . .] robustness analysis has shown that the principle is highly general

and will hold under a wide variety of conditions. It is not dependent on

idealizing assumptions made in various models of predation. While any

given model contains idealizing assumptions, analysis across models has

allowed us to control for them and factor them out.

A pressing question for our discussion of essentially idealized concrete models

is thus the relationship between the sort of dimensional analysis via scale series

carried out by Heller et al. and the robustness analysis advanced by Weisberg

and Reisman. Is the dimensional analysis just an instance of robustness ana-

lysis, or is there some significant difference between them?18

One difference is the scope of the two techniques: robustness analysis is

applicable to any essentially idealized model, while the scale series analysis

works only for concrete models, and only when the series is structured by the

background theory of dimensional analysis. The scale series considered smal-

ler and smaller concrete models, with depths ranging from 0.4 m to 0.1 m.

Significant scale effects arose when the depth went below 0.2 m indicating

that models with depths below 0.2 m could not reliably indicate the causes

of the primary wave run-up in the target phenomenon. A robustness analysis

of these results could thus conclude that the causal relationships found in the

larger model are not robust across all these changes in the depth. However,

the dimensional analysis allows additional conclusions to be drawn in terms of

the well-motivated dimensionless products F, R, and W. As we saw, there are

18 I am grateful to an anonymous referee for raising this question.
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empirically established thresholds that can be given in terms of R and W that

allow scientists to understand why a given causal regularity will not hold

below a certain scale. With the background theory of dimensional analysis

in place, then, additional, positive conclusions can be drawn when compared

to a generic form of robustness analysis. These positive conclusions enable the

practitioner to be more confident in extrapolating their causal claims from the

small-scale concrete models to the full-scale targets than they would otherwise

have been. On this reconstruction, then, the scale series analysis can be treated

as a special case of robustness analysis where additional background infor-

mation is provided by the theory of dimensional analysis.

One benefit of this reconstruction is that we can diagnose and address some

of the sceptical worries that have been raised about robustness analysis. For

example, Odenbaugh and Alexandrova ([2011]) maintain that robustness ana-

lysis is merely a means to discover certain principles, rather than to confirm

them in the way that Weisberg and Reisman claim. They reach this pessimistic

conclusion by pointing out that robustness analysis does not scrutinize all of

the idealizing assumptions of a model. This shows the possibility of residual

doubts about a principle that has passed various robustness tests. Without

endorsing this general worry, it should be clear how the background theory of

dimensional analysis can be used to respond to Odenbaugh and

Alexandrova’s scepticism for our case. This background theory tells us

which dimensionless products are sufficient to characterize the phenomenon

in question. There is thus genuine confirmation of a causal claim about the

target through the analysis of these concrete models.

6.2 Holism about models

Rice has recently argued that a wide variety of ‘decompositional’ approaches

to models fail for what we are calling essentially idealized models. This is

because it is not feasible to wall off the falsehoods associated with the ideal-

izations from the other aspects of the model. Rice ([2019], p. 182) targets

philosophers who deploy a ‘model decomposition assumption’ that supposes

that ‘The scientific model is decomposable such that the contributions of its

accurate parts can be isolated from the contributions of its inaccurate (that is,

idealized or abstracted) parts’. Rice ([2019], p. 204) rejects this assumption,

and concludes that models must be approached in a more holistic way: ‘Many

(if not most) idealized models in science ought to be characterized as holistic-

ally distorted representations of their target system(s)’. This is supposed to

have immediate implications for how essentially idealized models are used to

explain features of target systems. For if the model cannot be decomposed, but

is indeed a holistic unit, then the explanations that arise from the use of the

model bear a somewhat tenuous relationship to the model itself. As Rice
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([2019], p. 205) puts it, on his view, idealized models afford the use of various

mathematical techniques, and thus ‘provide epistemic access to explanations

and understanding that would otherwise be inaccessible’.

Rice is not focused on concrete models, but it would seem that the account

of model-based causal explanation developed here is an instance of precisely

the sort of model decomposition that Rice supposes is rarely possible. In

response to Rice I would distinguish two stages in the generation of a genuine

model-based causal explanation. In the first stage, the concrete model is con-

structed and interpreted. At this point I would agree with Rice that there is no

way to separate out which of the claims generated by the model about the

target are accurate and which claims are inaccurate. So I would agree with

Rice that at this first stage of investigation it is difficult to vindicate the model

decomposition assumption. But, against Rice, I would emphasize the signifi-

cance of a second stage of model-based science. During this stage, a scientist

can study the model and draw on a wide range of theoretical and experimental

knowledge for the express purpose of ‘decomposing’ the claims generated by

the interpreted model. This is an important part of modelling, where modellers

learn more about their models, and at times reconstruct the models themselves

in light of what has been found. In the Lituya Bay case, it is only through the

careful experimental study of the concrete model that modellers were able to

study the scale effects, and sort out their consequences. Once this stage is

complete, it is certainly possible to decompose the model and meet Rice’s

model decomposition assumption. In our case, various causes of AM and Y

in the Lituya Bay wave were identified through the model, and a causal ex-

planation was obtained. The idealizations associated with the scale effects

were found to be limited to aspects of the wave besides AM and Y, and a

partial correspondence between causes in the model and target was obtained.

To be fair to Rice, it must be emphasized that many of his interlocutors

make it appear as if it is a routine matter to sort out the accurate and inaccur-

ate claims generated by the model. For example, Weisberg ([2007a], p. 642)

talks of ‘the practice of constructing and studying theoretical models that

include only the core causal factors which gave rise to the phenomenon’.

This combines the two stages that I have just distinguished, and makes it

seem as if the modellers can tell in advance what those core causal factors

might be. A more charitable interpretation of Weisberg would be that he

intends just the sort of two-stage modelling process that I have described.

This is how he proceeds in his discussion of the ‘calibration’ of a concrete

model of the San Francisco Bay: ‘This required a feedback process: adjust-

ment to the model, then analysis of the model, then further modifications of

the model until the model reached a specified standard of fidelity’ (Weisberg

[2013], p. 95). An additional resource would be the sort of robustness analysis

sketched in the last subsection. Another of Rice’s ([2019], p. 185) targets,

Concrete Scale Models, Essential Idealization, and Causal Explanation 23

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axz019/5485252 by guest on 01 April 2020



Strevens, talks of dividing the ‘content’ of a model into two parts, where ‘The

first part contains the difference-makers for the explanatory target [. . .while]

The second part is all idealization; its overt claims are false but its role is to

point to parts of the actual world that do not make a difference to the ex-

planatory target’. Again, this makes it seem as if the initial interpretation of

the model effects a clear demarcation between what is supposed to be accurate

and what is inaccurate. But, as with Weisberg, we could charitably ascribe to

Strevens the two-stage account of modelling that I have developed: it is only

after the model has been investigated and perhaps adjusted that we can have

any confidence that we have sorted out the accurate from the inaccurate. At

the end of this process, we can engage in the selective endorsement of the

model’s claims in a principled manner, even if this is not possible at the be-

ginning of the modelling process.

This version of anti-holism about idealized models insists that it is some-

times possible to arrive at well justified claims about a target based on an

examination of a model. These claims include causal generalizations, and so

we have the means to causally explain features of the target using claims

generated by the model. However, Rice ([2019], p. 194) raises a further chal-

lenge to this approach, over and above the worries that we have already ad-

dressed: ‘even if we assume the real-world system and the idealized model are

decomposable in the ways required, the model’s idealizations will often distort

difference-making (that is, relevant) features of the model’s target system(s)’.

It is at this point that I believe that Weisberg, Strevens and many others are

vulnerable. For these authors have yet to confront the sort of essentially

idealized models that Rice emphasizes, and that I have developed here. In

our case, it is clear that � and � are causally relevant to the landslide generated

impulse wave in Lituya Bay, and yet the values of R and W are thousands of

times larger in the target than in the model. So it is just not clear how to

identify Weisberg’s ‘core causal factors’ so that � and � are excluded, and it

is also not clear how Strevens could suppose that � and � are not difference

makers for this ‘explanatory target’. On this point, we have the resources to

offer a new response to Rice’s worry: we can insist that � and � are condition-

ally causally irrelevant once R and W exceed the appropriate thresholds. So we

can grant to Rice that the concrete model generates claims that distort these

aspects of the target and that these aspects are (unconditionally) causally

relevant to the target system, that is, the wave. But the experimental evidence

assembled by Heller et al. allows us to conclude that these distorted features

are conditionally causally irrelevant to the features of the target system that we

are concerned with, namely, AM and Y.19

19 Just to be clear, nothing that I say here is incompatible with Weisberg’s treatment of concrete

models, such as the small-scale model of the San Francisco Bay (Weisberg [2013], especially
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It is important to emphasize how piecemeal this sort of response to Rice

really is. On the two-stage approach to modelling that I have described, mod-

ellers begin with an essentially idealized model and with no general assurance

that any useful explanation will be forthcoming. In the case of a concrete

model, additional experimental investigations are needed to sort out the ac-

curate claims from the inaccurate claims, and also to determine to what extent

the inaccurate claims lead to distortions of features of interest. It may seem

somewhat fortuitous that Heller et al. are able to identify thresholds in terms

of certain dimensionless products that assure them that the model-based ex-

planation is a genuine one. Many cases of modelling will surely end in failure,

with no viable explanation of features of the target. It is a matter of skill and

even luck to be able to get such modelling enterprises off the ground. My point

is mainly that modellers have unexpected resources in the case of concrete

models, and that they can exploit these resources to address the worries raised

by Rice and others.

7 Conclusion

In this paper I have used a case study of concrete models of landslide gener-

ated impulse waves to illustrate how essentially idealized concrete models may

be used to come to know causal explanations of real world phenomena. The

concrete models of these waves are essentially idealized due to ineliminable

scale effects that arise when a small-scale concrete model is built using the

same materials that are found in the target. There is a mismatch in some

dimensionless products that are known to reflect causally relevant features

of the process being studied. This idealization cannot be eliminated because

there is no feasible alternative means of modelling these waves using such

concrete models. However, practitioners were able to experiment with these

models and provide evidence that the mismatch between model and target

does not undermine the accurate representation of some of the causes of some

of the features of these waves.

This success highlights (i) the ongoing scientific value of concrete models,

(ii) their essentially idealized character, and (iii) how idealizations can be made

to cohere with model-based causal explanations. It remains to be seen how

widely this strategy can be extended, both in terms of other kinds of concrete

models and also for abstract mathematical models where the sources of es-

sential idealization will be different. In the landslide case, a generalization of

Woodward’s notion of conditional causal irrelevance proved crucial in vindi-

cating a principled strategy of selectively endorsing the claims generated by the

pp. 41–2, 84–8, 153, 167–8). However, I do not think Weisberg has yet clarified the benefits of

dimensional analysis in this sort of case.
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idealized model. But there is no a priori assurance that selective endorsement

will work in other cases. Additional investigations are needed to appreciate

why practitioners work with idealized models and what their strengths and

limitations might turn out to be.
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